Cold and Thermal Neutron Single Grating Dark-Field Imaging Extended to an Inverse Pattern Regime
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Arfelli, F.; Assante, M.; Bonvicini, V.; Bravin, A.; Cantatore, G.; Castelli, E.; Dalla Palma, L.; Di Michiel, M.; Longo, R.; Olivo, A.; et al. Low-dose phase contrast X-ray medical imaging. Phys. Med. Biol. 1998, 43, 2845. [Google Scholar] [CrossRef] [PubMed]
- Olivo, A.; Gkoumas, S.; Endrizzi, M.; Hagen, C.; Szafraniec, M.; Diemoz, P.; Munro, P.; Ignatyev, K.; Johnson, B.; Horrocks, J.; et al. Low-dose phase contrast mammography with conventional X-ray sources. Med. Phys. 2013, 40, 090701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfeiffer, F.; Grünzweig, C.; Bunk, O.; Frei, G.; Lehmann, E.; David, C. Neutron phase imaging and tomography. Phys. Rev. Lett. 2006, 96, 215505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strobl, M.; Grünzweig, C.; Hilger, A.; Manke, I.; Kardjilov, N.; David, C.; Pfeiffer, F. Neutron dark-field tomography. Phys. Rev. Lett. 2008, 101, 123902. [Google Scholar] [CrossRef] [Green Version]
- Valsecchi, J.; Harti, R.P.; Raventós, M.; Siegwart, M.D.; Morgano, M.; Boillat, P.; Strobl, M.; Hautle, P.; Holitzner, L.; Filges, U.; et al. Visualization and quantification of inhomogeneous and anisotropic magnetic fields by polarized neutron grating interferometry. Nat. Commun. 2019, 10, 3788. [Google Scholar] [CrossRef] [Green Version]
- Valsecchi, J.; Makowska, M.G.; Kim, Y.; Lee, S.W.; Grünzweig, C.; Piegsa, F.M.; Thijs, M.A.; Plomp, J.; Strobl, M. Decomposing magnetic dark-field contrast in spin analyzed Talbot-Lau interferometry: A Stern-Gerlach experiment without spatial beam splitting. Phys. Rev. Lett. 2021, 126, 070401. [Google Scholar] [CrossRef]
- Strobl, M. General solution for quantitative dark-field contrast imaging with grating interferometers. Sci. Rep. 2014, 4, 7243. [Google Scholar] [CrossRef] [Green Version]
- Weitkamp, T.; Diaz, A.; David, C.; Pfeiffer, F.; Stampanoni, M.; Cloetens, P.; Ziegler, E. X-ray phase imaging with a grating interferometer. Opt. Express 2005, 13, 6296–6304. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, K.; Wang, Z.; Liu, Y.; Liu, X.; Wu, Z.; McDonald, S.A.; Marone, F.; Stampanoni, M. Low-dose, simple, and fast grating-based X-ray phase-contrast imaging. Proc. Natl. Acad. Sci. USA 2010, 107, 13576–13581. [Google Scholar] [CrossRef] [Green Version]
- Strobl, M.; Valsecchi, J.; Harti, R.; Trtik, P.; Kaestner, A.; Gruenzweig, C.; Polatidis, E.; Capek, J. Achromatic non-interferometric single grating neutron dark-field imaging. Sci. Rep. 2019, 9, 19649. [Google Scholar] [CrossRef]
- Valsecchi, J.; Strobl, M.; Harti, R.P.; Carminati, C.; Trtik, P.; Kaestner, A.; Grünzweig, C.; Wang, Z.; Jefimovs, K.; Kagias, M. Characterization of oriented microstructures through anisotropic small-angle scattering by 2D neutron dark-field imaging. Commun. Phys. 2020, 3, 42. [Google Scholar] [CrossRef]
- Strobl, M.; Harti, R.P.; Grünzweig, C.; Woracek, R.; Plomp, J. Small angle scattering in neutron imaging—A review. J. Imaging 2017, 3, 64. [Google Scholar] [CrossRef] [Green Version]
- Neuwirth, T.; Backs, A.; Gustschin, A.; Vogt, S.; Pfeiffer, F.; Böni, P.; Schulz, M. A high visibility Talbot-Lau neutron grating interferometer to investigate stress-induced magnetic degradation in electrical steel. Sci. Rep. 2020, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Valsecchi, J.; Kim, J.; Lee, S.W.; Strobl, M. Symmetric Talbot-Lau neutron grating interferometry and incoherent scattering correction for quantitative dark-field imaging. Sci. Rep. 2019, 9, 18973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Valsecchi, J.; Oh, O.; Kim, J.; Lee, S.W.; Boue, F.; Lutton, E.; Busi, M.; Garvey, C.; Strobl, M. Quantitative Neutron Dark-Field Imaging of Milk: A Feasibility Study. Appl. Sci. 2022, 12, 833. [Google Scholar] [CrossRef]
- Strobl, M.; Sales, M.; Plomp, J.; Bouwman, W.G.; Tremsin, A.S.; Kaestner, A.; Pappas, C.; Habicht, K. Quantitative neutron dark-field imaging through spin-echo interferometry. Sci. Rep. 2015, 5, 16576. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, E.H.; Vontobel, P.; Wiezel, L. Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility. Nondestruct. Test. Eval. 2001, 16, 191–202. [Google Scholar] [CrossRef]
- Kaestner, A.; Hartmann, S.; Kühne, G.; Frei, G.; Grünzweig, C.; Josic, L.; Schmid, F.; Lehmann, E. The ICON beamline—A facility for cold neutron imaging at SINQ. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectromet. Detect. Assoc. Equip. 2011, 659, 387–393. [Google Scholar] [CrossRef]
- Kagias, M.; Wang, Z.; Villanueva-Perez, P.; Jefimovs, K.; Stampanoni, M. 2D-Omnidirectional hard-X-ray scattering sensitivity in a single shot. Phys. Rev. Lett. 2016, 116, 093902. [Google Scholar] [CrossRef] [Green Version]
- Dreier, E.S.; Silvestre, C.; Kehres, J.; Turecek, D.; Khalil, M.; Hemmingsen, J.H.; Hansen, O.; Jakubek, J.; Feidenhans, R.; Olsen, U.L. Single-shot, omni-directional x-ray scattering imaging with a laboratory source and single-photon localization. Opt. Lett. 2020, 45, 1021–1024. [Google Scholar] [CrossRef]
- Raventós, M.; Lehmann, E.; Boin, M.; Morgano, M.; Hovind, J.; Harti, R.; Valsecchi, J.; Kaestner, A.; Carminati, C.; Boillat, P.; et al. A Monte Carlo approach for scattering correction towards quantitative neutron imaging of polycrystals. J. Appl. Crystallogr. 2018, 51, 386–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boillat, P.; Carminati, C.; Schmid, F.; Grünzweig, C.; Hovind, J.; Kaestner, A.; Mannes, D.; Morgano, M.; Siegwart, M.; Trtik, P.; et al. Chasing quantitative biases in neutron imaging with scintillator-camera detectors: A practical method with black body grids. Opt. Express 2018, 26, 15769–15784. [Google Scholar] [CrossRef] [PubMed]
- Carminati, C.; Boillat, P.; Schmid, F.; Vontobel, P.; Hovind, J.; Morgano, M.; Raventos, M.; Siegwart, M.; Mannes, D.; Gruenzweig, C.; et al. Implementation and assessment of the black body bias correction in quantitative neutron imaging. PLoS ONE 2019, 14, e0210300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging. Sci. Rep. 2016, 6, 38307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willendrup, P.K.; Lefmann, K. McStas (i): Introduction, use, and basic principles for ray-tracing simulations. J. Neutron Res. 2020, 22, 1–16. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busi, M.; Zdora, M.-C.; Valsecchi, J.; Bacak, M.; Strobl, M. Cold and Thermal Neutron Single Grating Dark-Field Imaging Extended to an Inverse Pattern Regime. Appl. Sci. 2022, 12, 2798. https://doi.org/10.3390/app12062798
Busi M, Zdora M-C, Valsecchi J, Bacak M, Strobl M. Cold and Thermal Neutron Single Grating Dark-Field Imaging Extended to an Inverse Pattern Regime. Applied Sciences. 2022; 12(6):2798. https://doi.org/10.3390/app12062798
Chicago/Turabian StyleBusi, Matteo, Marie-Christine Zdora, Jacopo Valsecchi, Michael Bacak, and Markus Strobl. 2022. "Cold and Thermal Neutron Single Grating Dark-Field Imaging Extended to an Inverse Pattern Regime" Applied Sciences 12, no. 6: 2798. https://doi.org/10.3390/app12062798
APA StyleBusi, M., Zdora, M. -C., Valsecchi, J., Bacak, M., & Strobl, M. (2022). Cold and Thermal Neutron Single Grating Dark-Field Imaging Extended to an Inverse Pattern Regime. Applied Sciences, 12(6), 2798. https://doi.org/10.3390/app12062798