Recovery of Carotenoids from Tomato Pomace Using a Hydrofluorocarbon Solvent in Sub-Critical Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Sample Preparation
2.2. Lab-Scale Apparatus
2.3. Extraction Process
- Total extraction yields of lycopene and β-carotene after 2 h runs carried out on P;
- Total extraction yields of lycopene and β-carotene after 2 h runs carried out on BPS;
- Total extraction yields of lycopene and β-carotene after 2 h runs carried out on BPWGF;
- Total extraction yields of lycopene and β-carotene after 2 h runs carried out on LSP;
- Total extraction yields of lycopene and β-carotene after 2 h runs carried out on LWGFP;
- Cumulative extraction yields of lycopene and β-carotene determined during 2 h of extraction process on LSP bed.
- Cumulative extraction yields of lycopene and β-carotene determined during 2 h of process on LWGFP bed.
2.4. Analytical Methods
2.5. Solubility Study
- δT = total Hansen parameter [MPa]1/2;
- δd = dispersion parameter [MPa]1/2;
- δp = polar parameter [MPa]1/2;
- δhb = hydrogen bonding parameter [MPa]1/2;
- fd = fractional dispersion parameter;
- fp = fractional polar parameter;
- fhb = fractional hydrogen bonding parameter.
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Giovanelli, G.; Paradiso, A. Stability of dried and intermediate moisture tomato pulp during storage. J. Agric. Food Chem. 2002, 50, 7277–7281. [Google Scholar] [CrossRef] [PubMed]
- Zuorro, A.; Fidaleo, M.; Lavecchia, R. Enzyme-assisted extraction of lycopene from tomato processing waste. Enzym. Microb. Technol. 2011, 49, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Gomez, M.J.; Dıaz-Ravina, M.; Romero, E.; Nogales, R. Recycling of environmentally problematic plant wastes generated from greenhouse tomato crops through vermicomposting. Int. J. Environ. Sci. Technol. 2013, 10, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Scoma, A.; Rebecchi, S.; Bertin, L.; Fava, F. High impact biowastes from South European agro industries as feedstock for second-generation biorefineries. Crit. Rev. Biotechnol. 2016, 36, 175–189. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Strati, I.F.; Oreopoulou, V. Effect of extraction parameters on the carotenoid recovery from tomato waste. Int. J. Food Sci. Technol. 2010, 46, 23–29. [Google Scholar] [CrossRef]
- Kun, Y.; Ssonko Lule, U.; Xiao-Lin, D. Lycopene: Its Properties and Relationship to Human Health. Food Rev. Int. 2006, 22, 309–333. [Google Scholar] [CrossRef]
- Steven, K.; Clinton, M. Lycopene: Chemistry, Biology, and Implications for Human Health and Disease. Nutr. Rev. 1998, 56, 35–51. [Google Scholar] [CrossRef]
- Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. J. Natl. Cancer Inst. 1999, 91, 317–331. [Google Scholar] [CrossRef]
- Padalino, L.; Conte, A.; Lecce, L.; Likyova, D.; Sicari, V.; Pellicanò, T.M.; Poiana, M.; Del Nobile, A. Functional Pasta with Tomato By-product as a Source of Antioxidant Compounds and Dietary Fibre. Czech J. Food Sci. 2017, 35, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Mehanna, N.; Hassan, F.; El-Messery, T.; Mohamed, A.G. Production of functional processed cheese by using Tomato juice. Int. J. Dairy Sci. 2017, 12, 155–160. [Google Scholar] [CrossRef]
- Sandei, L.; Stingone, C.; Vitelli, R.; Cocconi, E.; Zanotti, A.; Zoni, C. Processing tomato by-products re-use, secondary raw material for tomato product with new functionality. Acta Hortic. 2019, 1233, 255–260. [Google Scholar] [CrossRef]
- Gallo, M.; Passannanti, F.; D’ Apolito, E.; Nigro, F.; Salameh, D.; Nigro, R. Biotechnological production of natural sweeteners and preservatives on tomato paste. J. Food Process Eng. 2019, 43, e13327. [Google Scholar] [CrossRef]
- Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 1989, 274, 532–538. [Google Scholar] [CrossRef]
- Cazzola, P. Lycopene: Biological activity and use perspectives in dermatology. J. Plast. Dermatol. 2012, 8, 199–210. [Google Scholar]
- Shixian, Q.; Dai, Y.; Kakuda, Y.; Shi, J. Synergistic Anti-Oxidative Effects of Lycopene with Other Bioactive Compounds. Food Rev. Int. 2005, 21, 295–311. [Google Scholar] [CrossRef]
- Sharma, S.K.; Le Maguer, M. Lycopene in tomatoes and tomato pulp fractions. Ital. J. Food Sci. 1996, 8, 107–113. [Google Scholar]
- Eller, F.J.; Moser, J.K.; Kenar, J.A.; Taylor, S.L. Extraction and Analysis of Tomato Seed Oil. J. Am. Oil Chem. Soc. 2010, 87, 755–762. [Google Scholar] [CrossRef] [Green Version]
- Baysal, T.; Ersus, S.; Starmans, J. Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J. Agric. Food Chem. 2000, 48, 5507–5511. [Google Scholar] [CrossRef]
- Sabio, E.; Lozano, M.; Montero de Espinosa, V.; Mendes, R.; Pereira, A.; Palavra, A.F.; Coelho, J.A. Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Ind. Eng. Chem. Res. 2003, 42, 6641–6646. [Google Scholar] [CrossRef]
- Vagi, E.; Simandi, B.; Vasarhelyine, K.; Daood, H.; Kery, A.; Doleschall, F.; Nagy, B. Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids 2007, 40, 218–226. [Google Scholar] [CrossRef]
- Baldino, L.; Scognamiglio, M.; Reverchon, E. Supercritical fluid technologies applied to the extraction of compounds of industrial interest from Cannabis sativa L. and to their pharmaceutical formulations: A review. J. Supercrit. Fluids 2020, 165, 104960. [Google Scholar] [CrossRef]
- Martins, C.M.; Guedes, J.A.C.; de Brito, E.S.; Ferreira, S.R.S. Valorization of tamarind seeds using high-pressure extraction methods to obtain rich fractions in fatty acid and phenolic compounds. J. Supercrit. Fluids 2022, 183, 105556. [Google Scholar] [CrossRef]
- Vasapollo, G.; Longo, L.; Rescio, L.; Ciurlia, L. Innovative supercritical CO2 extraction of lycopene from tomato in the presence of vegetable oil as co-solvent. J. Supercrit. Fluids 2004, 29, 87–96. [Google Scholar] [CrossRef]
- Lenucci, M.; Caccioppola, A.; Durante, M.; Serrone, L.; Leonardo, R.; Piro, G. Optimisation of biological and physical parameters for lycopene supercritical CO2 extraction from ordinary and high-pigment tomato cultivars. J. Sci. Food Agric. 2010, 90, 1709–1718. [Google Scholar] [CrossRef]
- Ciurlia, L.; Bleve, M.; Rescio, L. Supercritical carbon dioxide co-extraction of tomatoes (Lycopersicum esculentum L.) and hazelnuts (Corylus avellana L.): A new procedure in obtaining a source of natural lycopene. J. Supercrit. Fluids 2009, 49, 338–344. [Google Scholar] [CrossRef]
- Honda, M.; Kageyama, H.; Hibino, T.; Takemura, R.; Goto, M.; Fukaya, T. Enhanced Z-isomerization of tomato lycopene through the optimal combination of food ingredients. Sci. Rep. 2019, 9, 7979. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Honda, M.; Higashiura, T.; Fukaya, T.; Machmudah, S.; Kanda, H.; Goto, M. Rapid and Selective Concentration of Lycopene Z-isomers from Tomato Pulp by Supercritical CO2 with Co-solvents. Solv. Extr. Res. Dev. 2018, 25, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Machmudah, S.; Winardi, S.; Sasaki, M.; Goto, M.; Kusumoto, N.; Hayakawa, K. Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J. Food Eng. 2012, 108, 290–296. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Temelli, F.; Guigard, S.E.; Tomberli, B.; Gray, C.G. Apparent solubility of lycopene and β-carotene in supercritical CO2, CO2 + ethanol and CO2 + canola oil using dynamic extraction of tomatoes. J. Food Eng. 2010, 99, 1–8. [Google Scholar] [CrossRef]
- Squillace, P.; Adani, F.; Scaglia, B. Supercritical CO2 extraction of tomato pomace: Evaluation of the solubility of lycopene in tomato oil as limiting factor of the process performance. Food Chem. 2020, 315, 126224. [Google Scholar] [CrossRef] [PubMed]
- Colucci Cante, R.; Prisco, I.; Garella, I.; Gallo, M.; Nigro, R. Extracting the lipid fraction from waste bilberry seeds with a hydrofluorocarbon solvent. Chem. Eng. Res. Des. 2020, 157, 174–181. [Google Scholar] [CrossRef]
- Colucci Cante, R.; Garella, I.; Gallo, M.; Nigro, R. Effect of moisture content on the extraction rate of coffee oil from spent coffee grounds using Norflurane as solvent. Chem. Eng. Res. Des. 2021, 165, 172–179. [Google Scholar] [CrossRef]
- Lapkin, A.; Plucinski, P.K.; Cutler, M. Comparative assessment of technologies for extraction of Artemisinin. J. Nat. Prod. 2006, 69, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Garella, I. Dispositivo di Estrazione Solido-Liquido ad Alta Efficienza. Patent n.0001396896, 20 December 2012. [Google Scholar]
- Wang, T.; Johnson, L.A. Refining high-free fatty acid wheat germ oil. J. Am. Oil Chem. Soc. 2001, 78, 71–76. [Google Scholar] [CrossRef]
- Schuler, P. Natural Antioxidants Exploited Commercially. In Food Antioxidants; Hudson, B.J.F., Ed.; Elsevier: London, UK, 1990; pp. 99–170. [Google Scholar] [CrossRef]
- Batista, M.M.; Guirardello, R.; Krähenbühl, M.A. Determination of the Hansen solubility parameters of vegetable oils, biodiesel, diesel, and biodiesel–diesel blends. J. Am. Oil Chem. Soc. 2015, 92, 95–109. [Google Scholar] [CrossRef]
- Stefanis, E.; Panayiotou, C. Prediction of Hansen solubility parameters with a new group-contribution method. Int. J. Thermophys. 2008, 29, 568–585. [Google Scholar] [CrossRef]
- Pandya, D.; Akbari, S.; Bhatt, H.G.; Joshi, D.; Darji, V. Identification of Suitable Solvent System for Efficient Extraction of Lycopene from Tomato Pomace. J. Food Sci. Technol. 2015, 3, 83–86. [Google Scholar]
- Garti, N.; Shevachman, M.; Shani, A. Solubilization of lycopene in Jojoba oil microemulsion. J. Am. Oil Chem. Soc. 2004, 81, 873–877. [Google Scholar] [CrossRef]
- Mieliauskaitė, D.; Viškelis, P.; Noreika, R.; Viškelis, J. Lycopene Solubility and Its Extraction from Tomatoes and their by-products. In Proceedings of the International Symposium on Food Processing, Monitoring Technology in Bioprocesses and Food Quality Management, Potsdam, Germany, 31 August–2 September 2009. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 5280489, Beta-Carotene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Carotene (accessed on 8 January 2022).
#Trial/ (Sample) | Extraction Bed Mass (g) | MTP/Mco-matrix (g/g) | Solvent Flow Rate (mL/min) | Total Run Time (min) | Extraction Temperature (° C) |
---|---|---|---|---|---|
1/(P) | 6 | _ | 100 | 120 | 35 |
2/(BPS) | 16 | 37/63 | 100 | 120 | 35 |
3/(BPWGF) | 20 | 25/75 | 100 | 120 | 35 |
4/(LSP) | 20 | 37/63 | 100 | 120 | 35 |
5/(LWGFP) | 20 | 25/75 | 100 | 120 | 35 |
6/(LSP) | 20 | 37/63 | 100 | 120 | 35 |
7/(LWGFP) | 30 | 25/75 | 100 | 120 | 35 |
Matrix | Grinding Pre-Treatment | OC (goil/gdry solid) | LC (mglycopene/gdry solid) | βC (mgβ-carotene/gdry solid) |
---|---|---|---|---|
TS | yes | 0.16 ± 0.388 a | 0.058 ± 0.0042 a | 0.035 ± 0.0028 a |
WGF | no | 0.10 ± 0.329 b | ND | 0.015 ± 0.002 b |
TP | yes | ND | 0.650 ± 0.0495 b | 0.197 ± 0.066 c |
#Trial/(Sample) | ηL, (mg/mg) | ηβc, (mg/mg) | CL (mg/goil) | Cβc (mg/goil) |
---|---|---|---|---|
1/(P) | 0.005 ± 0.001 a | 0.074 ± 0.002 a | no co-matrix | |
2/(BPS) | 0.063 ± 0.004 b | 0.421 ± 0.023 b | 0.240 ± 0.004 a | 0.600 ± 0.011 a |
3/(BPWGF) | 0.106 ± 0.009 c | 0.292 ± 0.013 c | 0.270 ± 0.0123 b | 0.263 ± 0.007 b |
4/(LSP) | 0.132 ± 0.010 d | 0.733 ± 0.037 d | 0.328 ± 0.163 c | 0.952 ± 0.002 c |
5/(LWGFP) | 0.123 ± 0.008 d | 0.842 ± 0.043 e | 0.309 ± 0.012 c | 0.733 ± 0.038 d |
Solvents | (mglycopene/gdry TP) | Solvents | (mglycopene/gdry TP) |
---|---|---|---|
N-hexane a | 0.0054 | N-hexane: Acetone: Ethanol a | 0.0559 |
Acetone a | 0.0379 | Acetone: Ethyl acetate a | 0.0791 |
Petroleum ether a | 0.0048 | Acetone: Ethanol a | 0.0352 |
Ethanol a | 0.0115 | Petroleum Ether: Ethanol a | 0.0275 |
Ethyl acetate a | 0.0118 | Norflurane b | 0.0031 |
N-hexane: Acetone a | 0.0125 | Norflurane: TS oil c | 0.0628 |
N-hexane: Ethanol a | 0.0314 | Norflurane: WGF oil d | 0.1057 |
Tomato Seeds Oil by n-Hexane (%) | Tomato Seeds Oil by Norflurane (%) | Wheat Germ Oil by n-Hexane (%) | Wheat Germ Oil by Norflurane (%) | |
---|---|---|---|---|
C14:0 | 0.1054 ± 0.0634 a | 0.1124 ± 0.0817 a | ND | ND |
C15:1 | 0.0650 ± 0.0561 a | 0.0640 ± 0.0514 a | ND | ND |
C16:0 | 12.3328 ± 0.1062 a | 12.5747 ± 0.0994 a | 17.6525 ± 0.0645 b | 18.0113 ± 0.0471 b |
C16:1 | 0.2434 ± 0.0491 a | 0.2450 ± 0.0376 a | 0.1534 ± 0.0993 b | ND |
C16:3 | 0.5073 ± 0.0699 a | 0.4855 ± 0.0613 a | ND | ND |
C18:0 5 | 5.3608 ± 0.0724 a | 5.1386 ± 0.0799 a | 0.6257 ± 0.0531 b | 0.6346 ± 0.0463 b |
C18:1 ω-9 | 19.0591 ± 0.0763 a | 18.6581 ± 0.0892 a | 12.1847 ± 0.0673 b | 12.2875 ± 0.0701 b |
C18:1 ω-7 | 0.8352 ± 0.0305 a | 0.8470 ± 0.0236 a | 1.2467 ± 0.0306 b | 1.2015 ± 0.0446 b |
C18:2 ω-6 | 57.8462 ± 0.0640 a | 58.4502 ± 0.0534 a | 57.7802 ± 0.0920 a | 57.8570 ± 0.0883 a |
C18:3 ω-3 | 2.6173 ± 0.0725 a | 2.5406 ± 0.0818 a | 7.9474 ± 0.0689 b | 7.8671 ± 0.0801 b |
C20:0 | 0.3673 ± 0.0550 a | 0.3466 ± 0.0472 a | 0.1365 ± 0.0355 b | ND |
C20:1 ω-9 | 0.0763 ± 0.0287 a | 0.0897 ± 0.0228 a | 1.3276 ± 0.0913 b | 1.2804 ± 0.0860 b |
C20:5 ω-3 | 0.0999 ± 0.0478 a | 0.0889 ± 0.0316 a | 0.1028 ± 0.0481 a | ND |
C22:0 | ND | ND | 0.2403 ± 0.0236 b | 0.2253 ± 0.0363 b |
C22:1 ω-9 | ND | ND | 0.2730 ± 0.0488 b | 0.3909 ± 0.0564 b |
Unsaturated-to-saturated ratio | 4.47 a | 4.48 a | 4.34 a | 4.29 a |
Feedstock | Solvent | T (°C) | P (atm) | t (h) | co- Matrix | co- Solvent | Mco-solvent (g) | (g) | Solvent Flow Rate (mL/min) | Solubility (Mole Fraction) | η (%) | Reference | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | βc | L | βc | |||||||||||||
Tomato Peel | R134a | 35 | 8 | 2 | no | no | 0 | 0 | 29,280 | 0 | 200 | 2.08 × 10−9 | 5.69 × 10−5 | 0.5 | 7.4 | This work |
Tomato Peel | Sc-CO2 | 90 | 494 | 3 | no | no | 0 | 0 | 450 | 0 | 3 | 4.70 × 10−7 | NA | 17.5 | NA | [29] |
Tomato Pulp | Sc-CO2 | 50 | 296 | 1 | no | no | 0 | 0 | 160 | 0 | 3 | 5.04 × 10−7 | NA | 1.2 | NA | [28] |
Tomato Pulp | Sc-CO2 | 50 | 296 | 8 | no | no | 0 | 0 | 1250 | 0 | 3 | 1.26 × 10−7 | NA | 2.4 | NA | [28] |
Tomato Pulp | Sc-CO2 | 50 | 494 | 8 | no | no | 0 | 0 | 1380 | 0 | 3 | 3.57 × 10−8 | NA | 1 | NA | [27] |
Tomato Pulp + Peel | Sc-CO2 | 40 | 400 | 6 | no | no | 0 | 0 | 320 | 0 | 0.94 | 9.83 × 10−8 | 4.07 × 10−3 | 0.1 | 1.5 | [30] |
Tomato Paste | Sc-CO2 | 60 | 550 | 2 | no | no | 0 | 0 | 9880 | 0 | 2 | NA | 7.24 × 10−3 | NA | 40 | [19] |
Tomato Peel | R134a | 35 | 8 | 2 | Layered TS | TS oil | 0.101 | 2 | 29,280 | 6.831 × 10−5 | 200 | 4.39 × 10−5 | 4.16 × 10−4 | 13.24 | 73.3 | This work |
Tomato Peel | R134a | 35 | 8 | 2 | Blended TS | TS oil | 0.101 | 1.5 | 29,280 | 5.123 × 10−5 | 200 | 1.67 × 10−9 | 9.05 × 10−4 | 6.28 | 42.1 | This work |
Tomato Peel | R134a | 35 | 8 | 2 | LayeredWGF | WGF oil | 0.075 | 1.5 | 29,280 | 5.123 × 10−5 | 200 | 2.77 × 10−9 | 2.32 × 10−4 | 12.35 | 84.2 | This work |
Tomato Peel | R134a | 35 | 8 | 2 | BlendedWGF | WGF oil | 0.075 | 1.5 | 29,280 | 5.123 × 10−5 | 200 | 2.37 × 10−9 | 6.68 × 10−4 | 10.57 | 29.20 | This work |
Tomato Peel | Sc-CO2 | 80 | 380 | 2.3 | no | TS oil | 0.145 | 145 | 34,430 | 4.211 × 10−5 | 308 | 3.88 × 10−6 | NA | 94 | NA | [31] |
Tomato Peel | Sc-CO2 | 90 | 494 | 3 | no | TS oil | 0.210 | 0.8 | 450 | 1.778 × 10−5 | 3 | 5.57 × 10−7 | NA | 56 | NA | [29] |
Tomato Peel | Sc-CO2 | 60 | 400 | 8 | Roasted Hazelnut | Hazelnut Oil | 0.375 | 1125 | 80,310 | 0.014 | 188 | 1.43 × 10−5 | NA | 72.51 | NA | [26] |
Tomato Pulp | Sc-CO2 | 50 | 296 | 1 | no | Hazelnut Oil | 1.957 | 7.8 | 160 | 0.048 | 3 | 9.07 × 10−6 | NA | 21.6 | NA | [28] |
Tomato Pulp | Sc-CO2 | 50 | 296 | 8 | no | Hazelnut Oil | 15.660 | 62.6 | 1250 | 0.050 | 3 | 3.48 × 10−6 | NA | 66.4 | NA | [28] |
Tomato Pulp 50 °C Heated@ 50 °C | Sc-CO2 | 50 | 494 | 8 | no | Olive Oil | 0.01 | 0.3 | 1380 | 2.174 × 10−4 | 3 | 9.84 × 10−7 | NA | 27.6 | NA | [27] |
Tomato Pulp 120 °C Heated@ 120 °C | Sc-CO2 | 50 | 494 | 8 | no | Olive Oil | 0.01 | 0.3 | 1380 | 2.174 × 10−4 | 3 | 5.53 × 10−7 | NA | 15.5 | NA | [27] |
Tomato Pulp | Sc-CO2 | 50 | 494 | 8 | no | Olive Oil | 0.01 | 0.3 | 1380 | 2.174 × 10−4 | 3 | 2.32 × 10−7 | NA | 6.5 | NA | [27] |
Tomato Pulp + Peel | Sc-CO2 | 40 | 400 | 6 | no | Ethanol | 1.624 | 16.2 | 320 | 0.050 | 0.94 | 1.72 × 10−7 | 9.11 × 10−3 | 0.17 | 3.36 | [30] |
Tomato Pulp + Peel | Sc-CO2 | 40 | 400 | 6 | no | Canola Oil | 1.624 | 16.2 | 320 | 0.050 | 0.94 | 4.68 × 10−7 | 1.80 × 10−2 | 0.46 | 6.65 | [30] |
Tomato Paste Waste | Sc-CO2 | 65 | 300 | 2 | no | Ethanol | 3.773 | 200 | 9880 | 0.020 | 74.1 | NA | 2.58 × 10−4 | 51.5 | 43.02 | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colucci Cante, R.; Gallo, M.; Varriale, L.; Garella, I.; Nigro, R. Recovery of Carotenoids from Tomato Pomace Using a Hydrofluorocarbon Solvent in Sub-Critical Conditions. Appl. Sci. 2022, 12, 2822. https://doi.org/10.3390/app12062822
Colucci Cante R, Gallo M, Varriale L, Garella I, Nigro R. Recovery of Carotenoids from Tomato Pomace Using a Hydrofluorocarbon Solvent in Sub-Critical Conditions. Applied Sciences. 2022; 12(6):2822. https://doi.org/10.3390/app12062822
Chicago/Turabian StyleColucci Cante, Rosa, Marianna Gallo, Lorenzo Varriale, Isidoro Garella, and Roberto Nigro. 2022. "Recovery of Carotenoids from Tomato Pomace Using a Hydrofluorocarbon Solvent in Sub-Critical Conditions" Applied Sciences 12, no. 6: 2822. https://doi.org/10.3390/app12062822
APA StyleColucci Cante, R., Gallo, M., Varriale, L., Garella, I., & Nigro, R. (2022). Recovery of Carotenoids from Tomato Pomace Using a Hydrofluorocarbon Solvent in Sub-Critical Conditions. Applied Sciences, 12(6), 2822. https://doi.org/10.3390/app12062822