Lp-Order Time–Frequency Spectra and Its Application in Edge Detection
Abstract
:1. Introduction
2. Generalized Hilbert Transform (GHT)
2.1. Theory of GHT
2.2. Analysis of GHT
2.3. Synthetic 1D Channel Data Testing
3. Lp-Order Time–Frequency Spectra (LTFS)
3.1. Theory of High-Stability GHT (SGHT)
3.2. Theory of LTFS
3.3. Analysis of LTFS
3.4. Synthetic 1D Channel Data Testing
4. Examples
4.1. Synthetic 2D Seismic Data Example
4.2. Actual 3D Seismic Data Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Theory of HT
References
- Luo, Y.; Saleh, A.; Marhoon, M. Generalized Hilbert transform and its applications in Geophysics. Lead. Edge 2003, 22, 198–202. [Google Scholar] [CrossRef]
- Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex seismic trace analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Gabor, D. Theory of communication. J. Inst. Electr. Eng. 1946, 93, 429–457. [Google Scholar] [CrossRef]
- Kronland-Martinet, R.; Morlet, J.; Grossmann, A. Analysis of sound patterns through wavelet transforms. Int. J. Pattern Recognit. Artif. Intell. 1987, 1, 273–302. [Google Scholar] [CrossRef]
- Mallat, S.; Hwang, W.L. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 1992, 38, 617–643. [Google Scholar] [CrossRef]
- Daubechies, I.; Maes, S. A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. In Wavelets in Medicine and Biology; CRC Press: Boca Raton, FL, USA, 1996; pp. 527–546. [Google Scholar]
- Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex spectrum: The S-transform. IEEE Trans. Signal Process. 1996, 44, 998–1001. [Google Scholar] [CrossRef]
- Pinnegar, C.R.; Mansinha, L. The S-transform with windows of arbitrary and varying shape. Geophysics 2003, 68, 381–385. [Google Scholar] [CrossRef]
- McFadden, P.D.; Cook, J.G.; Forster, L.M. Decomposition of gear vibration signals by the generalized s transform. Mech. Syst. Signal Process. 1999, 13, 691–707. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng.Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I.; Lu, J.; Wu, H.T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 2011, 30, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Zhang, G.L. Time-phase amplitude spectra based on a modified short-time Fourier transform. Geophys. Prospect 2018, 66, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.L.; Li, Y.; Wang, T.Y.; Du, H.; Luo, F.; Zhan, Y.Z. Extended Hilbert transform and application for seismic attributes. Earth Space Sci. 2019, 6, 873–886. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.L.; Duan, J.; He, C.J.; Du, H.; Luo, F.; Zhan, Y.Z.; Wang, J. Extended stable factor method for the inverse Q-filter. Geophysics 2020, 85, T155–T163. [Google Scholar] [CrossRef]
- Auger, F.; Flandrin, P.; Lin, Y.T.; McLaughlin, S.; Meignen, S.; Oberlin, T.; Wu, H.T. Time-frequency reassignment and synchrosqueezing: An overview. IEEE Signal Process. Mag. 2013, 30, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Herrera, R.H.; Han, J.J.; Baan, M.V.D. Applications of the synchrosqueezing transform in seismic time-frequency analysis. Geophysics 2014, 79, V55–V64. [Google Scholar] [CrossRef]
- Zhang, G.L.; Duan, J.; Li, Y.; He, C.J.; Zhan, Y.Z.; Wang, J. Adaptive time-resample high-resolution synchrosqueezing transform and its application in seismic data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6691–6698. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.L. High-precision and high-resolution synchrosqueezing transform via time-frequency instantaneous phases. Appl. Sci. 2021, 11, 11760. [Google Scholar] [CrossRef]
- Marfurt, K.J. Robust estimates of 3D reflector dip and azimuth. Geophysics 2006, 71, 29–40. [Google Scholar] [CrossRef]
- Marfurt, K.J. Techniques and best practices in multiattribute display. Interpretation 2015, 3, B1–B23. [Google Scholar] [CrossRef]
- Robert, A. Curvature attributes and their application to 3D interpreted horizons. First Break 2001, 19, 85–100. [Google Scholar] [CrossRef]
- Nyquist, H. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng 1928, 47, 617–644. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the presence of noise. Proc. IRE. 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Bracewell, R.N. The Fourier Transform and Its Applications; McGraw-Hill Book Co., Inc.: New York, NY, USA, 1965; pp. 268–271. [Google Scholar]
- Li, B.; Xu, N.W.; Dai, F.; Zhang, G.L.; Xiao, P.W. Dynamic analysis of rock mass deformation in large underground caverns considering microseismic data. Int. J. Rock Mech. Min. Sci. 2019, 122, 104078. [Google Scholar] [CrossRef]
- Li, B.; Ding, Q.F.; Xu, N.W.; Dai, F.; Xu, Y.; Qu, H.L. Characteristics of microseismic b-value associated with rock mass large deformation in underground powerhouse caverns at different stress levels. J. Cent. South Univ. 2022, 29, 693–711. [Google Scholar]
Methods | GHT with p = 0.2 (or LTFS with p = 0.2, f1 = 0 Hz, and f2 = 500 Hz) | LTFS with p = 0.2, f1 = 10 Hz, and f2 = 100 Hz |
---|---|---|
Time costs (s) | T1 = 4.21 | T3 = 0.77 |
Ratios of time costs | T1/T3 = 5.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Cao, J.; He, Z.; Li, Y.; Lin, K.; Zhang, G. Lp-Order Time–Frequency Spectra and Its Application in Edge Detection. Appl. Sci. 2022, 12, 2836. https://doi.org/10.3390/app12062836
Liu H, Cao J, He Z, Li Y, Lin K, Zhang G. Lp-Order Time–Frequency Spectra and Its Application in Edge Detection. Applied Sciences. 2022; 12(6):2836. https://doi.org/10.3390/app12062836
Chicago/Turabian StyleLiu, Houjun, Junxing Cao, Zhenhua He, Yong Li, Kai Lin, and Gulan Zhang. 2022. "Lp-Order Time–Frequency Spectra and Its Application in Edge Detection" Applied Sciences 12, no. 6: 2836. https://doi.org/10.3390/app12062836
APA StyleLiu, H., Cao, J., He, Z., Li, Y., Lin, K., & Zhang, G. (2022). Lp-Order Time–Frequency Spectra and Its Application in Edge Detection. Applied Sciences, 12(6), 2836. https://doi.org/10.3390/app12062836