Virulence Factors and Antimicrobial Resistance in Salmonella Species Isolated from Retail Beef in Selected KwaZulu-Natal Municipality Areas, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Design
2.3. Sample Size Determination
- n = sample size, = standard normal variate (at 5% type 1 error, yielding 1.96);
- p = the expected proportion in the population based on previous studies and;
- d = absolute error.
2.4. Microbiological Analysis
2.4.1. Isolation and Identification of Salmonella
2.4.2. Salmonella Identification Using MALDI-TOF MS and VITEK MS
2.5. Serotyping
2.6. Antimicrobial Susceptibility Testing
2.7. Polymerase Chain Reaction (PCR) for Detection of Virulence Genes
2.7.1. DNA Extraction
2.7.2. PCR Analysis
2.7.3. Agarose Gel Electrophoresis
2.8. Reference Strains
2.9. Statistical Analysis
3. Results
Detection of Virulence Genes Using PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ferede, B. Isolation, Identification, Antimicrobial Susceptibility Test and Public Awareness of Salmonella on Raw Goat Meat at Dire Dawa Municipal Abattoir, Eastern Ethiopia. Master’s Thesis, Addis Ababa University, Bishoftu, Ethiopia, 2014. [Google Scholar]
- Gilchrist, J.J.; Maclennan, C.A. Invasive Nontyphoidal Salmonella Disease in Africa. EcoSal Plus 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keddy, K. Non typhoidal Salmonella and the African growth and opportunity act. Commun. Dis. Surveill. Bull. 2016, 14. [Google Scholar]
- Mishu, B.; Koehler, J.; Lee, L.; Tauxe, R. Outbreaks of Salmonella enteritidis infections in the United States, 1985–1991. J. Infect. Dis. 1994, 169, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Chávez, L.; Cabrera-Diaz, E.; Pérez-Montaño, J.A.; Garay-Martínez, L.E.; Varela-Hernández, J.J.; Castillo, A.; Lucia, L.; Ávila-Novoa, M.G.; Cardona-López, M.D.; Gutiérrez-González, P.; et al. Quantitative distribution of Salmonella spp. and Escherichia coli on beef carcasses and raw beef at retail establishments. Int. J. Food Microbiol. 2015, 210, 149–155. [Google Scholar] [CrossRef]
- Ejeta, G.; Molla, B.; Alemayehu, D.; Muckle, A. Salmonella serotypes isolated from minced meat beef, mutton and pork in Addis Ababa, Ethiopia. Revue Méd. Vét. 2004, 155, 547–551. [Google Scholar]
- Cabrera-Diaz, E.; Barbosa-Cardenas, C.M.; Perez-Montano, J.A.; Gonzalez-Aguilar, D.; Pacheco-Gallardo, C.; Barba, J. Occurrence, serotype diversity, and antimicrobial resistance of Salmonella in ground beef at retail stores in Jalisco State, Mexico. J. Food Prot. 2013, 76, 2004–2010. [Google Scholar] [CrossRef]
- Siddiky, N.A.; Sarker, M.S.; Khan, M.; Begum, R.; Kabir, M.E.; Karim, M.R.; Rahman, M.T.; Mahmud, A.; Samad, M.A. Virulence and Antimicrobial Resistance Profiles of Salmonella enterica Serovars Isolated from Chicken at Wet Markets in Dhaka, Bangladesh. Microorganisms 2021, 9, 952. [Google Scholar] [CrossRef]
- Cheng, R.A.; Eade, C.R.; Wiedmann, M. Embracing diversity: Differences in virulence mechanisms, disease severity, and host adaptations contribute to the success of nontyphoidal Salmonella as a foodborne pathogen. Front. Microbiol. 2019, 10, 1368. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, B.; Tsai, C.N.; Coombes, B.K. Evolution of Salmonella-host cell interactions through a dynamic bacterial genome. Front. Cell. Infect. Microbiol. 2017, 7, 428. [Google Scholar] [CrossRef]
- Marcus, S.L.; Brumell, J.H.; Pfeifer, C.G.; Finlay, B.B. Salmonella pathogenicity islands: Big virulence in small packages. Microbes Infect. 2000, 2, 145–156. [Google Scholar] [CrossRef]
- Festa, R.; Ambrosio, R.L.; Lamas, A.; Gratino, L.; Palmieri, G.; Franco, C.M.; Cepeda, A.; Anastasio, A. A study on the antimicrobial and antibiofilm peptide 1018-K6 as potential alternative to antibiotics against food-pathogen Salmonella enterica. Foods 2021, 10, 1372. [Google Scholar] [CrossRef]
- Varma, J.K.; Greene, K.D.; Ovitt, J.; Barrett, T.J.; Medalla, F.; Angulo, F.J. Hospitalization and antimicrobial resistance in Salmonella outbreaks, 1984–2002. Emerg. Infect. Dis. 2005, 11, 943–946. [Google Scholar] [CrossRef] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [Green Version]
- DAFF Trends in the Agricultural Sector. 2017. Available online: https://www.daff.gov.za/Daffweb3/Portals/0/Statistics%20and%20Economic%20Analysis/Statistical%20Information/Trends%20in%20the%20Agricultural%20Sector%202017.pdf (accessed on 22 January 2020).
- Kau, J.S. The growth prospects of the South African beef industry in an uncertain socio-economic environment. In Annual Beef Bulletin; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2016. [Google Scholar]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infect. Drug Resist. 2019, 12, 3537–3548. [Google Scholar] [CrossRef] [Green Version]
- Charan, J.; Biswas, C. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Käsbohrer, A.; Bernd-Alois, T.; Appel, B.; Fetsch, A. Development of Harmonised Survey Methods for Food-Borne Pathogens in Foodstuffs in the European Union; European Food Safety Authority: Parma, Italy, 2010; Volume 7. [Google Scholar] [CrossRef]
- EN ISO 6579-1; Microbiology of the Food Chain–Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella–Part 1: Detection of Salmonella spp. International Organization for Standardization: Geneva, Switzerland, 2017.
- Dieckmann, R.; Helmuth, R.; Erhard, M.; Malorny, B. Rapid classification and identification of Salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry. Appl. Environ. Microbiol. 2008, 74, 7767–7778. [Google Scholar] [CrossRef] [Green Version]
- Grimont, P.A.D.; Weill, F.X. Antigenic Formulae of the Salmonella Serovars, 9th ed.; World Health Organization Collaborating Centre for Reference and Research on Salmonella, Institut Pasteur: Paris, France, 2007. [Google Scholar]
- Madoroba, E.; Kapeta, D.; Gelaw, A.K. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J. Vet. Res. 2016, 83, 1–8. [Google Scholar] [CrossRef] [Green Version]
- American Society of Microbiology 2016. Available online: https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf (accessed on 11 November 2021).
- CLSI. CLSI Supplement M100: Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Zahraei-Salehi, T.; Mahzoonae, M.R.; Ashrafi, A. Amplification of invA gene of Salmonella by polymerase chain reaction (PCR) as a specific method for detection of Salmonella. J. Fac. Vet. Med. Univ. Tehran 2006, 61, 195–199. [Google Scholar]
- Bäumler, A.J.; Heffron, F. Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella Typhimurium. J. Bacteriol. 1995, 177, 2087–2097. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Chen, J.; Beuchat, L.; Brackett, R. PCR detection of Salmonella enterica serotype Montevideo in and on raw tomatoes using primers derived from hilA. Appl. Environ. Microbiol. 2000, 66, 5248–5252. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, R.; Humphries, A.; Weening, E. Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype Typhimurium: Identification of intestinal colonization and persistence determinants. Infect. Immun. 2003, 71, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, S.D.; Santos, L.R.; Schuch, D.M.; Silva, A.B.; Salle, C.T.; Canal, C.W. Detection and identification of Salmonella from poultry-related samples by PCR. Vet. Microbiol. 2002, 87, 25–35. [Google Scholar] [CrossRef]
- Prager, R.; Rabsch, W.; Streckel, W.; Voigt, W.; Tietze, E.; Tschäpe, H. Molecular properties of Salmonella enterica serotype Paratyphi B distinguish between its systemic and its enteric pathovars. J. Clin. Microbiol. 2003, 41, 4270–4278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swamy, S.C.; Barnhart, H.M.; Lee, M.D.; Dreesen, D.W. Virulence determinants invA and spvC in Salmonellae isolated from poultry products, wastewater, and human sources. Appl. Environ. Microbiol. 1996, 62, 3768–3771. [Google Scholar] [CrossRef] [Green Version]
- Madoroba, E.; Magwedere, K.; Chaora, N.S.; Matle, I.; Muchadeyi, F.; Mathole, M.A.; Pierneef, R. Microbial communities of meat and meat products: An exploratory analysis of the product quality and safety at selected enterprises in South Africa. Microorganisms 2021, 9, 507. [Google Scholar] [CrossRef]
- Gashe, B.A.; Mpuchane, S. Prevalence of Salmonellae on beef products at butcheries and their antibiotic resistance profiles. J. Food Sci. 2000, 65, 880–883. [Google Scholar] [CrossRef]
- Stevens, A.; Kaboré, Y.; Perrier-Gros-Claude, J.-D.; Millemann, Y.; Brisabois, A.; Catteau, M.; Cavin, J.F.; Dufour, B. Prevalence and antibiotic-resistance of Salmonella isolated from beef sampled from the slaughterhouse and from retailers in Dakar (Senegal). Int. J. Food Microbiol. 2006, 110, 178–186. [Google Scholar] [CrossRef]
- Kagambèga, A.; Haukka, K.; Siitonen, A.; Traoré, A.S.; Barro, N. Prevalence of Salmonella enterica and the hygienic indicator Escherichia coli in raw meat at markets in Ouagadougou, Burkina Faso. J. Food Prot. 2011, 74, 1547–1551. [Google Scholar] [CrossRef]
- Peruzy, M.F.; Capuano, F.; Proroga, Y.T.R.; Cristiano, D.; Carullo, M.R.; Murru, N. Antimicrobial susceptibility testing for salmonella serovars isolated from food samples: Five-year monitoring (2015–2019). Antibiotics 2020, 9, 365. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- Kshirsagar, D.P.; Singh, S.; Brahmbhatt, M.N.; Nayak, J.B. Isolation and molecular characterization of virulence-associated genes of Salmonella from buffalo meat samples in Western Region of India. Isr. J. Vet. Med. 2014, 69, 228–233. [Google Scholar]
- Malorny, B.; Hoorfar, J.; Bunge, C.; Helmuth, R. Multicenter Validation of the Analytical Accuracy of Salmonella PCR: Towards an International Standard. Appl. Environ. Microbiol. 2003, 69, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Rahn, K.; De Grandis, S.A.; Clarke, R.C.; McEwen, S.A.; Galán, J.E.; Ginocchio, C.; Curtiss III, R.; Gyles, C.L. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 1992, 6, 271–279. [Google Scholar] [CrossRef]
- Galán, J.E.; Curtiss, R., III. Cloning and molecular characterization of genes whose products allow Salmonella Typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 1989, 86, 6383–6387. [Google Scholar] [CrossRef] [Green Version]
- Galán, J.E.; Curtiss, R., III. Distribution of the invA, -B, -C, and -D genes of Salmonella Typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect. Immun. 1991, 59, 2901–2908. [Google Scholar] [CrossRef] [Green Version]
Antimicrobial Agent | Abbreviation | Disk Content (µg) |
---|---|---|
Amoxicillin | A | 25 |
Ampicillin | AP | 10 |
Cefoxitin | FOX | 30 |
Cefotaxime | CTX | 30 |
Chloramphenicol | C | 30 |
Ciprofloxacin | CIP | 5 |
Gentamicin | GM | 10 |
Kanamycin | K | 30 |
Tetracycline | TET | 30 |
Trimethoprim sulfamethoxazole | TS | 25 |
Target Gene | Sequence | Amplicon Size (bp) |
---|---|---|
invA | F-GTGAAATTATCGCCACGTTCGGGCAA R-TCATCGCACCGTCAAAGGAACC | 284 |
agfA | F-TCCACAATGGGGCGGCGGCG R-CCTGACGCACCATTACGCTG | 350 |
lpfA | F-CTTTCGCTGCTGAATCTGGT R-CAGTGTTAACAGAAACCAGT | 250 |
hilA | F-CTGCCGCAGTGTTAAGGATA R-CTGTCGCCTTAATCGCATGT | 497 |
sivH | F-GTATGCGAACAAGCGTAACAC R-CAGAATGCGAATCCTTCGCAC | 763 |
sefA | F-GATACTGCTGAACGTAGAAGG R-GCGTAAATCAGCATCTGCAGTAGC | 488 |
sopE | F-GGATGCCTTCTGATGTTGACTGG R-ACACACTTTCACCGAGGAAGCG | 398 |
spvC | F-CCCAAACCCATACTTACTCTG R-CGGAAATACCATCTACAAATA | 669 |
Sample Type | Serovar |
---|---|
Beef intestines | Stanley |
Beef tripe | Heidelberg |
Beef tripe | Hadar |
Beef Kidney | Enteritidis |
Beef Rib | Stanley |
Sample Type | Serovar | Virulence Gene | |||||||
---|---|---|---|---|---|---|---|---|---|
invA | AgfA | LpfA | HilA | sivH | SefA | sopE | spvC | ||
Beef Intestines | S. Stanley | + | + | − | + | + | − | − | − |
Beef tripe | S. Heidelberg | − | + | − | + | − | − | − | − |
Beef intestines | S. Hadar | + | + | + | + | + | − | − | − |
Beef kidney | S. Enteritidis | + | + | + | − | − | + | − | − |
Beef rib | S. Stanley | + | + | + | + | − | + | + | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidoo, S.; Butaye, P.; Maliehe, T.S.; Magwedere, K.; Basson, A.K.; Madoroba, E. Virulence Factors and Antimicrobial Resistance in Salmonella Species Isolated from Retail Beef in Selected KwaZulu-Natal Municipality Areas, South Africa. Appl. Sci. 2022, 12, 2843. https://doi.org/10.3390/app12062843
Naidoo S, Butaye P, Maliehe TS, Magwedere K, Basson AK, Madoroba E. Virulence Factors and Antimicrobial Resistance in Salmonella Species Isolated from Retail Beef in Selected KwaZulu-Natal Municipality Areas, South Africa. Applied Sciences. 2022; 12(6):2843. https://doi.org/10.3390/app12062843
Chicago/Turabian StyleNaidoo, Serisha, Patrick Butaye, Tsolanku S. Maliehe, Kudakwashe Magwedere, Albert K. Basson, and Evelyn Madoroba. 2022. "Virulence Factors and Antimicrobial Resistance in Salmonella Species Isolated from Retail Beef in Selected KwaZulu-Natal Municipality Areas, South Africa" Applied Sciences 12, no. 6: 2843. https://doi.org/10.3390/app12062843
APA StyleNaidoo, S., Butaye, P., Maliehe, T. S., Magwedere, K., Basson, A. K., & Madoroba, E. (2022). Virulence Factors and Antimicrobial Resistance in Salmonella Species Isolated from Retail Beef in Selected KwaZulu-Natal Municipality Areas, South Africa. Applied Sciences, 12(6), 2843. https://doi.org/10.3390/app12062843