Marine Geopolymer Concrete—A Hybrid Curable Self-Compacting Sustainable Concrete for Marine Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Binder Materials
2.2. Alkali Activators
2.3. Aggregates
3. Mixing and Casting
4. Experimental Program
4.1. Exposure Conditions
4.2. Test Methods
4.2.1. Compressive Strength
4.2.2. Indirect Tensile Strength
4.2.3. Modulus of Elasticity
5. Results and Discussion
5.1. Comparison of Mass and Density Properties
5.2. Comparison of Compressive Strength
5.3. Comparison of Indirect Tensile Strength
5.4. Comparison of Modulus of Elasticity
5.5. Comparison of Visual Observation
6. Conclusions
- When exposed to marine conditions under accelerated wet–dry cycles, the specimens did not report any loss of mass or leaching of salts in the exposure period.
- The cylinder specimens that were exposed to hybrid exposures (28-day ambient curing followed by 3 months of immersion in artificial seawater) reported improved mechanical properties, specifically a 30% increase in compressive strength compared to the 28-day strength of 40 MPa.
- This study confirms that the selected SCGC mix can be successfully used for marine applications, and can acquire a design strength of 40 MPa with added strength development of up to 50 MPa, under harsh marine conditions without any strength deterioration from this exposure.
- The improved mechanical performance of SCGC confirms that the heated and humid environments favour the strength development of the mix by aiding geopolymerisation of any unreacted species in the core of the specimens.
- This study also warrants more research to promote geopolymer concrete as a sustainable solution for marine water structures.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okamura, H.; Ouchi, M. Self-compacting concrete. J. Adv. Concr. Technol. 2003, 1, 5–15. [Google Scholar] [CrossRef]
- Valizadeh, A.; Aslani, F.; Asif, Z.; Roso, M. Development of Heavyweight Self-Compacting Concrete and Ambient-Cured Heavyweight Geopolymer Concrete Using Magnetite Aggregates. Materials 2019, 12, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.K.; Al-Ameri, R. A newly developed self-compacting geopolymer concrete under ambient condition. Constr. Build. Mater. 2020, 267, 121822. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Ghorbel, E.; Wardeh, G. Effect of Curing Conditions on the Performance of Geopolymer Concrete Based on Granulated Blast Furnace Slag and Metakaolin. J. Mater. Civ. Eng. 2021, 33, 04020501. [Google Scholar] [CrossRef]
- Davidovits, J. Eopolymer Cement. Geopolymer Institute Library. 2013, pp. 1–11. Available online: https://www.geopolymer.org/wp-content/uploads/GPCement2013.pdf (accessed on 1 January 2022).
- Mohajerani, A.; Suter, D.; Jeffrey-Bailey, T.; Song, T.; Arulrajah, A.; Horpibulsuk, S.; Law, D. Recycling waste materials in geopolymer concrete. Clean Technol. Environ. Policy 2019, 21, 493–515. [Google Scholar] [CrossRef]
- Van Deventer, J.S.; Provis, J.; Duxson, P. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 2012, 29, 89–104. [Google Scholar] [CrossRef]
- Kashani, A.; Ngo, T.D.; Mendis, P. The effects of precursors on rheology and self-compactness of geopolymer concrete. Mag. Concr. Res. 2019, 71, 557–566. [Google Scholar] [CrossRef]
- Phoo-Ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P. Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer. Constr. Build. Mater. 2015, 91, 1–8. [Google Scholar] [CrossRef]
- Patel, Y.J.; Shah, N. Development of self-compacting geopolymer concrete as a sustainable construction material. Sustain. Environ. Res. 2018, 28, 412–421. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Nuruddin, M.F.; Malkawi, A.B.; Fauzi, A.; Mohammed, B.; Al-Mattarneh, H. Geopolymer concrete for structural use: Recent findings and limitations. IOP Conf. Ser. Mater. Sci. Eng. 2016, 133, 012021. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Singh, S.P.; Murmu, M. Effects of Curing Temperature on Strength of Lime-Activated Slag Cement. Int. J. Civ. Eng. 2017, 15, 575–584. [Google Scholar] [CrossRef]
- Kubba, Z.; Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Asaad, M.A.; Ismail, M.; Tahir, M.M.; Mirza, J. Impact of curing temperatures and alkaline activators on compressive strength and porosity of ternary blended geopolymer mortars. Case Stud. Constr. Mater. 2018, 9, e00205. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A. Performance-based criteria to assess the suitability of geopolymer concrete in marine environments using modified ASTM C1202 and ASTM C1556 methods. Mater. Struct. 2018, 51, 1–16. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Chalee, W. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Constr. Build. Mater. 2014, 63, 303–310. [Google Scholar] [CrossRef]
- Pasupathy, K.; Sanjayan, J.; Rajeev, P.; Law, D.W. The effect of chloride ingress in reinforced geopolymer concrete exposed in the marine environment. J. Build. Eng. 2021, 39, 102281. [Google Scholar] [CrossRef]
- Li, W.; Shumuye, E.D.; Shiying, T.; Wang, Z.; Zerfu, K. Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Stud. Constr. Mater. 2022, 16, e00894. [Google Scholar] [CrossRef]
- Noushini, A.; Nguyen, Q.D.; Castel, A. Assessing alkali-activated concrete performance in chloride environments using NT Build 492. Mater. Struct. 2021, 54, 57. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, S.; Quan, X.; Xu, F.; Liu, K.; Liu, Y. Behavior of polyvinyl alcohol fiber reinforced geopolymer composites under the coupled attack of sulfate and freeze-thaw in a marine environment. Ocean Eng. 2021, 238, 109734. [Google Scholar] [CrossRef]
- Zaidi, F.H.A.; Ahmad, R.; Abdullah, M.M.A.B.; Tahir, M.F.M.; Yahya, Z.; Ibrahim, W.M.W.; Sauffi, A.S. Performance of Geopolymer Concrete when Exposed to Marine Environment. IOP Conf. Series: Mater. Sci. Eng. 2019, 551, 012092. [Google Scholar] [CrossRef]
- Ly, O.; Yoris-Nobile, A.I.; Sebaibi, N.; Blanco-Fernandez, E.; Boutouil, M.; Castro-Fresno, D.; Hall, A.E.; Herbert, R.J.; Deboucha, W.; Reis, B.; et al. Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis. Constr. Build. Mater. 2020, 272, 121649. [Google Scholar] [CrossRef]
- Korniejenko, K. Geopolymers for Increasing Durability for Marine Infrastructure. Spec. Publ. 2018, 326, 20–21. [Google Scholar] [CrossRef]
- Wang, A.; Lyu, B.; Zhu, Y.; Liu, K.; Guo, L.; Sun, D. A gentle acid-wash and pre-coating treatment of coral aggregate to manufacture high-strength geopolymer concrete. Constr. Build. Mater. 2020, 274, 121780. [Google Scholar] [CrossRef]
- Amran, M.; Al-Fakih, A.; Chu, S.H.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-term durability properties of geopolymer concrete: An in-depth review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Noushini, A.; Castel, A.; Aldred, J.; Rawal, A. Chloride diffusion resistance and chloride binding capacity of fly ash-based geopolymer concrete. Cem. Concr. Compos. 2020, 105, 103290. [Google Scholar] [CrossRef]
- Ab Manaf, M.B.H.; Yahya, Z.; Razak, R.A.; Al Bakri, A.M.M.; Ariffin, N.F.; Ahmad, M.M.; Chong, Y.C. Surface Resistivity and Ultrasonic Pulse Velocity Evaluation of Reinforced OPC Concrete and Reinforced Geopolymer Concrete in Marine Environment. In Advances in Mechatronics, Manufacturing, and Mechanical Engineering; Springer: Singapore, 2020; pp. 292–298. [Google Scholar] [CrossRef]
- Devi, R.K.; Muthukannan, M.; Chokkalingam, R.B.; Malayali, A.B.; Murali, M.; Maridurai, T. A study on evolution of geopolymer concrete. Mater. Today Proc. 2021, 46, 3975–3978. [Google Scholar] [CrossRef]
- Rahman, S.; Al-Ameri, R. Experimental Investigation and Artificial Neural Network Based Prediction of Bond Strength in Self-Compacting Geopolymer Concrete Reinforced with Basalt FRP Bars. Appl. Sci. 2021, 11, 4889. [Google Scholar] [CrossRef]
- Rahman, S.K.; Al-Ameri, R. The Need for a User Friendly Geopolymer Concrete-Ongoing Research. Available online: http://www.ciaconference.com.au/concrete2021/pdf/full-paper_43.pdf (accessed on 1 January 2022).
- Ouellet-Plamondon, C.; Habert, G. Life cycle assessment (LCA) of alkali-activated cements and concretes. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Woodhead Publishing: Cambridge, UK, 2015; pp. 663–686. [Google Scholar] [CrossRef]
- EFNARC. Specification and Guidelines for Self-Compacting Concrete; EFNARC: Farnham, UK, 2002. [Google Scholar]
- Rahimireskati, S.; Garcez, E.O.; Ghabraie, K.; Al-Ameri, R. Durability and Corrosion Assessment of Reinforced Concrete Containing Biomedical Polymeric Waste. In Proceedings of the 30th Concrete Institute of Australia’s Biennial National Conference, CONCRETE 2021, Perth, Australia, 5–8 September 2021; Concrete Institute of Australia: Sydney, Australia, 2021; pp. 1–9. [Google Scholar]
- Wei, A.; Tan, M.Y.; Koay, Y.-C.; Hu, X.; Al-Ameri, R. Effect of carbon fiber waste on steel corrosion of reinforced concrete structures exposed to the marine environment. J. Clean. Prod. 2021, 316, 128356. [Google Scholar] [CrossRef]
- Wu, G.; Dong, Z.-Q.; Wang, X.; Zhu, Y.; Wu, Z.-S. Prediction of Long-Term Performance and Durability of BFRP Bars under the Combined Effect of Sustained Load and Corrosive Solutions. J. Compos. Constr. 2015, 19, 04014058. [Google Scholar] [CrossRef]
- Dong, Z.-Q.; Wu, G.; Xu, Y.-Q. Bond and Flexural Behavior of Sea Sand Concrete Members Reinforced with Hybrid Steel-Composite Bars Presubjected to Wet–Dry Cycles. J. Compos. Constr. 2017, 21, 04016095. [Google Scholar] [CrossRef]
- Dong, Z.; Wu, G.; Lian, J. Experimental study on the durability of FRP bars reinforced concrete beams in simulated ocean environment. Sci. Eng. Compos. Mater. 2018, 25, 1123–1134. [Google Scholar] [CrossRef]
- Wei, A.; Al-Ameri, R.; Koay, Y.; Tan, M. Triple-functional carbon fibre reinforced polymer for strengthening and protecting reinforced concrete structures. Compos. Commun. 2021, 24, 100648. [Google Scholar] [CrossRef]
- Rahimireskati, S.; Ghabraie, K.; Garcez, E.O.; Al-Ameri, R. Improving sorptivity and electrical resistivity of concrete utilising biomedical polymeric waste sourced from dialysis treatment. Int. J. Sustain. Eng. 2021, 14, 820–834. [Google Scholar] [CrossRef]
- Yuan, Y.; Ji, Y.; Shah, S.P. Comparison of Two Accelerated Corrosion Techniques for Concrete Structures. ACI Struct. J. 2007, 104, 344–347. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-34547884608&partnerID=40&md5=9c4818cf08f000d597040d3d8fc90d01 (accessed on 1 January 2022).
- AS 1012.9:2014; Methods of Testing Concrete, Compressive Strength Tests—Concrete, Mortar and Grout Specimens. Standards Australia: Sydney, Australia, 2014.
- AS 1012.10-2000; Methods of Testing Concrete-Determination of Indirect Tensile Strength of Concrete Cylinders. Standards Australia: Sydney, Australia, 2000.
- AS 1012.17-1997; Methods of Testing Concrete: Determination of the Static Chord Modulus of Elasticity and Poisson’s Ratio of Concrete Specimens. Standards Australia: Sydney, Australia, 1997.
- Razak, R.A.; Maliki, N.A.; Abdullah, M.M.A.B.; Ken, P.W.; Yahya, Z.; Junaidi, S. Performance of fly ash based geopolymer concrete in seawater exposure. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2021; Volume 2339, p. 020201. [Google Scholar] [CrossRef]
- Younis, K.H.; Salihi, K.; Mohammedameen, A.; Sherwani, A.F.H.; Alzeebaree, R. Factors affecting the Characteristics of Self-Compacting Geopolymer Concrete. IOP Conf. Ser. Earth Environ. Sci. 2021, 856, 012028. [Google Scholar] [CrossRef]
- Ganeshan, M.; Venkataraman, S. Durability and microstructural studies on fly ash blended self-compacting geopolymer concrete. Eur. J. Environ. Civ. Eng. 2019, 25, 2074–2088. [Google Scholar] [CrossRef]
- Castillo, H.; Collado, H.; Droguett, T.; Sánchez, S.; Vesely, M.; Garrido, P.; Palma, S. Factors Affecting the Compressive Strength of Geopolymers: A Review. Minerals 2021, 11, 1317. [Google Scholar] [CrossRef]
- Wei, X.; Ming, F.; Li, D.; Chen, L.; Liu, Y. Influence of Water Content on Mechanical Strength and Microstructure of Alkali-Activated Fly Ash/GGBFS Mortars Cured at Cold and Polar Regions. Materials 2019, 13, 138. [Google Scholar] [CrossRef] [Green Version]
- Nagaratnam, B.H.; Faheem, A.; Rahman, M.E.; Mannan, M.A.; Leblouba, M. Mechanical and Durability Properties of Medium Strength Self-Compacting Concrete with High-Volume Fly Ash and Blended Aggregates. Period. Polytech. Civ. Eng. 2015, 59, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Nagaraj, V.K.; Babu, D.L.V. Formulation and performance evaluation of alkali-activated self-compacting concrete. Asian J. Civ. Eng. 2018, 19, 1021–1036. [Google Scholar] [CrossRef]
- Neupane, K. Investigation on modulus of elasticity of powder-activated geopolymer concrete. Int. J. Struct. Eng. 2016, 7, 262. [Google Scholar] [CrossRef]
- Jithendra, C.; Elavenil, S. Sustainable Self-Compacting Geopolymer Concrete under Ambient Curing—Durability Properties. IOP Conf. Ser. Earth Environ. Sci. 2020, 573, 012039. [Google Scholar] [CrossRef]
Material * | Material Properties | ||||||
---|---|---|---|---|---|---|---|
Fineness (Passing through 45 µm Sieve) | Loss on Ignition | Moisture Content | SO3 Content | Available Alkali | Relative Density | Chloride Ion Content | |
Fly ash | 88% | 1.0% | 0.1% | 0.2% | - | - | - |
Micro fly ash | 99% | 0.7% | 0.01% | 0.2% | 0.2% | 2.35 | 0.001% |
Ground Granulated Blast Furnace Slag | 97% | - | - | - | - | 2.86 | - |
Chemical Composition | SiO2 | CaO | Al2O3 | MgO | K2O | SO3 | V2O5 | TiO2 | Na2O | P2O5 | FeO |
---|---|---|---|---|---|---|---|---|---|---|---|
Fly Ash (%) | 65.75 | - | 32.87 | - | - | - | - | 1.38 | - | - | - |
Slag (%) | 35.19 | 41.47 | 13.66 | 6.32 | - | 2.43 | 0.20 | 0.73 | - | - | - |
Micro Fly Ash (%) | 63.09 | - | 32.26 | - | 0.83 | - | - | 1.67 | 0.41 | 0.62 | 1.12 |
Mix Proportion of SCGC (Kg/m3) [3,28] | |
---|---|
Fly Ash | 480 |
Slag | 360 |
Micro Fly Ash | 120 |
Sodium metasilicate (Anhy.) Alkali Activator | 96 |
Fine Aggregate | 763 |
Coarse Aggregate | 677 |
Workability Properties of fresh SCGC | |
Slump Flow (mm) | 670 |
T500 (sec) | 4.10 |
Days of Exposure | Weight of Specimens, kg | Percentage change in weight between 28-day value and ambient conditioned samples (%) | Percentage change in weight between 28-day value and marine conditioned samples (%) | Percentage change in weight between ambient and marine conditioned samples (%) | ||
Value of 28-daycured specimen | Ambient conditions | Marine conditions | ||||
30 | 3.53 | 3.52 | 3.57 | 0.28 (−) | 1.13 (+) | 1.42 (+) |
60 | 3.51 | 3.60 | 0.57 (−) | 1.98 (+) | 2.56 (+) | |
120 | 3.50 | 3.61 | 0.85 (−) | 2.26 (+) | 3.14 (+) |
Days of Exposure | Density, kg/m3 | Percentage change in weight between 28-day value and ambient conditioned samples (%) | Percentage change in weight between 28-day value and marine conditioned samples (%) | Percentage change in weight between ambient and marine conditioned samples (%) | ||
Value of 28-daycured specimen | Ambient conditions | Marine conditions | ||||
30 | 2251 | 2245.15 | 2272.73 | 0.26 (−) | 0.97 (+) | 1.23 (+) |
60 | 2236.66 | 2291.83 | 0.64 (−) | 1.81 (+) | 2.46 (+) | |
120 | 2228.17 | 2293.95 | 1.01 (−) | 1.91 (+) | 2.95 (+) |
Days of Exposure | Compressive strength, MPa | Percentage change in weight between 28-day value and ambient conditioned samples (%) | Percentage change in weight between 28-day value and marine conditioned samples (%) | Percentage change in weight between ambient and marine conditioned samples (%) | ||
Value of 28-daycured specimen | Ambient conditions | Marine conditions | ||||
30 | 40 | 41.7 | 49.61 | 4.25 (+) | 24.02 (+) | 18.97 (+) |
60 | 42.5 | 52.73 | 6.25 (+) | 31.82 (+) | 24.07 (+) | |
120 | 42.3 | 52.58 | 5.75 (+) | 31.45 (+) | 24.30 (+) |
Days of Exposure | Indirect tensile strength, MPa | Percentage change in weight between 28-day value and ambient conditioned samples (%) | Percentage change in weight between 28-day value and marine conditioned samples (%) | Percentage change in weight between ambient and marine conditioned samples (%) | ||
Value of 28-daycured specimen | Ambient conditions | Marine conditions | ||||
30 | 3 | 3.03 | 2.68 | 1 (+) | 10.67 (−) | 11.55 (−) |
60 | 2.91 | 2.77 | 3 (−) | 7.67 (−) | 4.81 (−) | |
120 | 2.98 | 2.96 | 0.67 (−) | 1.33 (−) | 0.67 (−) |
Days of Exposure | Modulus of Elasticity, GPa | Percentage change in weight between 28-day value and ambient conditioned samples (%) | Percentage change in weight between 28-day value and marine conditioned samples (%) | Percentage change in weight between ambient and marine conditioned samples (%) | ||
Value of 28-daycured specimen | Ambient conditions | Marine conditions | ||||
30 | 15 | 15.14 | 23.73 | 0.93 (+) | 58.2 (+) | 56.74 (+) |
60 | 16.5 | 22.61 | 10 (+) | 50.73 (+) | 37.03 (+) | |
120 | 17.1 | 26.15 | 14 (+) | 74.33 (+) | 52.92 (+) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.K.; Al-Ameri, R. Marine Geopolymer Concrete—A Hybrid Curable Self-Compacting Sustainable Concrete for Marine Applications. Appl. Sci. 2022, 12, 3116. https://doi.org/10.3390/app12063116
Rahman SK, Al-Ameri R. Marine Geopolymer Concrete—A Hybrid Curable Self-Compacting Sustainable Concrete for Marine Applications. Applied Sciences. 2022; 12(6):3116. https://doi.org/10.3390/app12063116
Chicago/Turabian StyleRahman, Sherin Khadeeja, and Riyadh Al-Ameri. 2022. "Marine Geopolymer Concrete—A Hybrid Curable Self-Compacting Sustainable Concrete for Marine Applications" Applied Sciences 12, no. 6: 3116. https://doi.org/10.3390/app12063116
APA StyleRahman, S. K., & Al-Ameri, R. (2022). Marine Geopolymer Concrete—A Hybrid Curable Self-Compacting Sustainable Concrete for Marine Applications. Applied Sciences, 12(6), 3116. https://doi.org/10.3390/app12063116