MMPCANet: An Improved PCANet for Occluded Face Recognition
Abstract
:1. Introduction
2. Proposed Method
2.1. Multi-Layer Feature Fusion PCANet
2.2. Multi-Scale PCANet
3. The Analysis of the Proposed Algorithm
4. Experiments and Results
4.1. Experiments on CelebA
4.2. Experiments on the AR Database
4.3. Experiments on FERET Database
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ou, W.; Luan, X.; Gou, J.; Zhou, Q.; Xiao, W.; Xiong, X.; Zeng, W. Robust discriminative nonnegative dictionary learning for occluded face recognition. Pattern Recognit. Lett. 2018, 107, 41–49. [Google Scholar] [CrossRef]
- Kumar, A.; Kaur, A.; Kumar, M. Face detection techniques: A review. Artif. Intell. Rev. 2019, 52, 927–948. [Google Scholar] [CrossRef]
- Wang, H.; Hu, J.; Deng, W. Face feature extraction: A complete review. IEEE Access 2017, 6, 6001–6039. [Google Scholar] [CrossRef]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. Br. Mach. Vis. Assoc. 2015, 1–12. [Google Scholar]
- Qiu, H.; Gong, D.; Li, Z.; Liu, W.; Tao, D. End2End occluded face recognition by masking corrupted features. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 1. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.M. Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 748–763. [Google Scholar] [CrossRef] [Green Version]
- Cament, L.A.; Castillo, L.E.; Perez, J.P.; Galdames, F.J.; Perez, C.A. Fusion of local normalization and Gabor entropy weighted features for face identification. Pattern Recognit. 2014, 47, 568–577. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 210–227. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Hu, J.; Guo, J. Extended SRC: Undersampled face recognition via intraclass variant dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1864–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Hu, H. Nuclear norm based adapted occlusion dictionary learning for face recognition with occlusion and illumination changes. Neurocomputing 2019, 340, 133–144. [Google Scholar] [CrossRef]
- Gao, G.; Yu, Y.; Yang, M.; Chang, H.; Huang, P.; Yue, D. Cross-resolution face recognition with pose variations via multilayer locality-constrained structural orthogonal procrustes regression. Inf. Sci. 2020, 506, 19–36. [Google Scholar] [CrossRef]
- Wang, J.; Lu, C.; Wang, M.; Li, P.; Yan, S.; Hu, X. Robust face recognition via adaptive sparse representation. IEEE Trans. Cybern. 2014, 44, 2368–2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Wu, X.J.; Kittler, J. A sparse regularized nuclear norm based matrix regression for face recognition with contiguous occlusion. Pattern Recognit. Lett. 2019, 125, 494–499. [Google Scholar] [CrossRef]
- Chan, T.H.; Jia, K.; Gao, S.; Lu, J.; Zeng, Z.; Ma, Y. PCANet: A simple deep learning baseline for image classification? IEEE Trans. Image Process. 2015, 24, 5017–5032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Zhang, P.; Boudaren, M.E.Y.; Jiang, Y.; Song, W.; Li, B.; Li, M.; Wu, Y. High-Order Triplet CRF-PCANet for Unsupervised Segmentation of Nonstationary SAR Image. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8433–8454. [Google Scholar] [CrossRef]
- Korichi, A.; Slatnia, S.; Aiadi, O. TR-ICANet: A Fast Unsupervised Deep-Learning-Based Scheme for Unconstrained Ear Recognition. Arab. J. Sci. Eng. 2022, 1–12. [Google Scholar] [CrossRef]
- Ng, C.J.; Teoh, A.B.J. DCTNet: A simple learning-free approach for face recognition. In Proceedings of the 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), Hong Kong, China, 16–19 December 2015; pp. 761–768. [Google Scholar]
- Li, Y.K.; Wu, X.J.; Kittler, J. L1-2D 2 PCANet: A deep learning network for face recognition. J. Electron. Imaging 2019, 28, 023016. [Google Scholar] [CrossRef]
- Sang, H.; Zhou, Q.; Zhao, Y. Pcanet: Pyramid convolutional attention network for semantic segmentation. Image Vis. Comput. 2020, 103, 103997. [Google Scholar] [CrossRef]
- Abdelbaky, A.; Aly, S. Human action recognition using short-time motion energy template images and PCANet features. Neural Comput. Appl. 2020, 32, 12561–12574. [Google Scholar] [CrossRef]
- Zeng, R.; Wu, J.; Shao, Z.; Chen, Y.; Chen, B.; Senhadji, L.; Shu, H. Color image classification via quaternion principal component analysis network. Neurocomputing 2016, 216, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Alahmadi, A.; Hussain, M.; Aboalsamh, H.A.; Zuair, M. PCAPooL: Unsupervised feature learning for face recognition using PCA, LBP, and pyramid pooling. Pattern Anal. Appl. 2020, 23, 673–682. [Google Scholar] [CrossRef]
- Sun, Y. Deep learning face representation by joint identification-verification. In Advances in Neural Information Processing Systems; The Chinese University of Hong Kong: Hong Kong, China, 2015. [Google Scholar]
- Sun, Y.; Wang, X.; Tang, X. Deeply learned face representations are sparse, selective, and robust. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 2892–2900. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Kremic, E.; Subasi, A. Performance of random forest and SVM in face recognition. Int. Arab J. Inf. Technol. 2016, 13, 287–293. [Google Scholar]
- Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient convnet descriptor pyramids. arXiv 2014, arXiv:1404.1869. [Google Scholar]
- Phillips, P.J.; Moon, H.; Rizvi, S.A.; Rauss, P.J. The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1090–1104. [Google Scholar] [CrossRef]
- Yu, D.; Wu, X.J. 2DPCANet: A deep leaning network for face recognition. Multimed. Tools Appl. 2018, 77, 12919–12934. [Google Scholar] [CrossRef]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Hu, J.; Wu, X.; Zhou, J. Noise robust single image super-resolution using a multiscale image pyramid. Signal Process. 2018, 148, 157–171. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Guehairia, O.; Ouamane, A.; Dornaika, F.; Taleb-Ahmed, A. Feature fusion via Deep Random Forest for facial age estimation. Neural Netw. 2020, 130, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Large-scale celebfaces attributes (celeba) dataset. Retrieved August 2018, 15, 11. [Google Scholar]
- Martinez, A.; Benavente, R. The AR Face Database: CVC Technical Report, 24; Computer Vision Center: Barcelona, Spain, 1998. [Google Scholar]
Methods | Advantages | Disadvantages |
---|---|---|
ESRC [9] | Intraclass variations of the same person can be shared by others | Weak discrimination and large scale of occlusion dictionary |
NNAODL [10] | Integrates the error image with training samples to construct the dictionary | In the case of extreme dark illuminations or unconstrained settings, the accuracy is low |
PCANet [14] | Can be extremely easily and efficiently designed and learned | Easy to cause the loss of image information |
L1-2D2PCANet [19] | Uses the L1-norm-based 2DPCA for filter learning | The training time is long |
Methods based on deep learning [5,24,25,26] | Good performance and strong learning ability | Takes a lot of training samples and time |
MMPCANet | Makes full use of the locality and continuity of occlusion space to obtain better spatial information | High storage overhead |
Datasets | Subject | Images | Description |
---|---|---|---|
CelebA [35] | 10,177 | 202,599 | Includes faces without occlusion in front and occluded faces, such as wearing sunglasses and smiling expressions. |
AR [36] | 126 | 3276 | Includes different expressions, illumination, and occlusion changes. |
FERET [29] | 1199 | 14,126 | The images of the same person have different expressions, illumination, posture, and age changes. |
Method | Positive Samples | Negative Samples |
---|---|---|
ESRC [9] | 89.30 | 86.40 |
NNAODL [10] | 96.09 | 95.58 |
PCANet [14] | 95.20 | 94.93 |
2DPCANet [30] | 98.02 | 96.33 |
L1-2D2PCANet [19] | 97.58 | 97.50 |
MMPCANet | 99.07 | 98.49 |
Positive Samples | Negative Samples | |||
---|---|---|---|---|
Training Time (s) | Testing Time (s) | Training Time (s) | Testing Time (s) | |
PCANet [14] | 454.83 | 0.31 | 499.48 | 0.30 |
2DPCANet [30] | 374.07 | 0.23 | 404.80 | 0.23 |
L1-2D2PCANet [19] | 554.81 | 0.17 | 577.59 | 0.18 |
MMPCANet | 493.03 | 0.16 | 512.69 | 0.17 |
Method | Testing Set I | Testing Set II | Testing Set III | Avg. |
---|---|---|---|---|
ESRC [9] | 91.05 | 89.14 | 84.64 | 88.27 |
NNAODL [10] | 95.74 | 92.44 | 91.69 | 93.29 |
PCANet [14] | 93.27 | 90.48 | 87.66 | 90.47 |
2DPCANet [30] | 95.04 | 90.89 | 92.90 | 92.94 |
L1-2D2PCANet [19] | 96.05 | 95.88 | 94.43 | 95.45 |
MMPCANet | 98.95 | 96.56 | 97.23 | 97.58 |
Occlusion Percentage | 0% | 10% | 20% | 30% | 40% | 50% | 60% | 70% |
---|---|---|---|---|---|---|---|---|
ESRC [9] | 92.79 | 89.94 | 85.46 | 79.70 | 70.76 | 53.73 | 30.52 | 10.36 |
NNAODL [10] | 95.71 | 93.48 | 89.62 | 83.49 | 79.99 | 71.96 | 44.05 | 12.58 |
PCANet [14] | 96.46 | 94.14 | 91.29 | 81.72 | 77.21 | 70.93 | 41.98 | 11.27 |
2DPCANet [30] | 97.21 | 95.51 | 91.09 | 82.19 | 76.85 | 67.79 | 39.39 | 11.34 |
L1-2D2PCANet [19] | 98.04 | 97.32 | 92.78 | 85.86 | 78.34 | 69.93 | 44.48 | 12.16 |
MMPCANet | 98.93 | 97.51 | 93.53 | 89.37 | 85.60 | 79.32 | 66.55 | 13.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhang, Y.; Pan, C.; Cui, Z. MMPCANet: An Improved PCANet for Occluded Face Recognition. Appl. Sci. 2022, 12, 3144. https://doi.org/10.3390/app12063144
Wang Z, Zhang Y, Pan C, Cui Z. MMPCANet: An Improved PCANet for Occluded Face Recognition. Applied Sciences. 2022; 12(6):3144. https://doi.org/10.3390/app12063144
Chicago/Turabian StyleWang, Zewei, Yongjun Zhang, Chengchang Pan, and Zhongwei Cui. 2022. "MMPCANet: An Improved PCANet for Occluded Face Recognition" Applied Sciences 12, no. 6: 3144. https://doi.org/10.3390/app12063144
APA StyleWang, Z., Zhang, Y., Pan, C., & Cui, Z. (2022). MMPCANet: An Improved PCANet for Occluded Face Recognition. Applied Sciences, 12(6), 3144. https://doi.org/10.3390/app12063144