A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell’s Fabrication Procedure
2.2. Instrumental Section
3. Results and Discussion
3.1. Dyes’ Optical Properties
3.2. Bifacial Study on Two Different Electrolytes and Dyes
3.2.1. The Electrolyte
3.2.2. The Bifacial Factor
3.2.3. The Incident Photon to Current Efficiency
3.3. TiO2 Thickness Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q. Functional Organic and Hybrid Nanostructured Materials: Fabrication, Properties, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018. [Google Scholar]
- Bonaccorsi, L.; Calandra, P.; Kiselev, M.A.; Amenitsch, H.; Proverbio, E.; Lombardo, D. Self-assembly in poly(dimethylsiloxane)-poly(ethylene oxide) block copolymer template directed synthesis of linde type A zeolite. Langmuir 2013, 29, 7079–7086. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi, L.; Calandra, P.; Amenitsch, H.; Proverbio, E.; Lombardo, D. Growth of fractal aggregates during template directed SAPO-34 zeolite formation. Microporous Mesoporous Mater. 2013, 167, 3–9. [Google Scholar] [CrossRef]
- Turetta, N.; Stoeckel, M.; de Oliveira, R.F.; Devaux, F.; Greco, A.; Cendra, C.; Gullace, S.; Gicevičius, M.; Chattopadhyay, B.; Liu, J.; et al. High-Performance Humidity Sensing in π-Conjugated Molecular Assemblies through the Engineering of Electron/Proton Transport and Device Interfaces. Am. Chem. Soc. 2022, 6, 2546–2555. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wylie, R.A.L.; Klinger, D.; Connal, L.A. Shape Control of Soft Nanoparticles and Their Assemblies. Chem. Mater. 2017, 29, 1918–1945. [Google Scholar] [CrossRef]
- Lombardo, D.; Calandra, P.; Magazù, S.; Wanderlingh, U.; Barreca, D. Soft nanoparticles charge expression within lipid membranes: The case of amino terminated dendrimers in bilayers vesicles. Colloids Surf. B Biointerfaces 2018, 170, 609–616. [Google Scholar] [CrossRef]
- Lombardo, D.; Munaò, G.; Calandra, P.; Pasqua, L.; Caccamo, M.T. Evidence of pre-micellar aggregates in aqueous solution of amphiphilic PDMS–PEO block copolymer. Phys. Chem. Chem. Phys. 2019, 21, 11983–11991. [Google Scholar] [CrossRef]
- Freitag, M.; Teuscher, J.; Saygili, Y.; Zhang, X.; Giordano, F.; Liska, P.; Hua, J.; Zakeeruddin, S.M.; Moser, J.-E.; Grätzel, M.; et al. Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat. Photon. 2017, 11, 372–378. [Google Scholar] [CrossRef]
- Gullace, S.; Montes-García, V.; Martín, V.; Larios, D.; Consolaro, V.G.; Obelleiro, F.; Calogero, G.; Casalini, S.; Samorì, P. Universal Fabrication of Highly Efficient Plasmonic Thin-Films for Label-Free SERS Detection. Small 2021, 17, 2100755. [Google Scholar] [CrossRef]
- Urbanos, F.J.; Gullace, S.; Samorì, P. Field-effect-transistor-based ion sensors: Ultrasensitive mercury(II) detection via healing MoS2 defects. Nanoscale 2021, 13, 19682. [Google Scholar] [CrossRef]
- Mathew, R.J.; Lee, C.; Tseng, C.; Chand, P.K.; Huang, Y.; Chen, H.; Ho, K.; Anbalagan, A.; Lee, C.; Chen, Y.-T. Stoichiometry-Controlled MoxW1–xTe2 Nanowhiskers: A Novel Electrocatalyst for Pt-Free Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 34815–34824. [Google Scholar] [CrossRef]
- Karuppuchamyc, S.; Vijayaraghavan, S.; Gopalraman, A. High efficiency dye-sensitized solar cells with VOC–JSC trade off eradication by interfacial engineering of the photoanode|electrolyte interface. RSC Adv. 2019, 9, 40292–40300. [Google Scholar]
- Calabrò, E.; Matteocci, F.; Paci, B.; Cina, L.; Vesce, L.; Barichello, J.; Generosi, A.; Reale, A.; di Carlo, A. Easy strategy to enhance thermal stability of planar PSCs by perovskite defect passivation and low-temperature carbon-based electrode. ACS Appl. Mater. Interfaces 2020, 12, 32536–32547. [Google Scholar] [CrossRef] [PubMed]
- Barichello, J.; Vesce, L.; Matteocci, F.; Lamanna, E.; di Carlo, A. The effect of water in Carbon-Perovskite Solar Cells with optimized alumina spacer. Sol. Energy Mater. Sol. Cells 2019, 197, 76–83. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. J. Electron. Mater. 2021, 50, 3187–3206. [Google Scholar] [CrossRef]
- Minicante, S.A.; Ambrosi, E.; Back, M.; Barichello, J.; Cattaruzza, E.; Gonella, F.; Scantamburlo, E.; Trave, E. Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells. J. Phys. D Appl. Phys. 2016, 49, 295601. [Google Scholar] [CrossRef]
- Calogero, G.; Citro, I.; Sebastianella, G.C.; di Marco, G.; Diniz, A.M.; Parola, A.J.; Pina, F. A Photoelectrochemical Study of Bioinspired 2-Styryl-1-Benzopyrylium Cations on TiO2 Nanoparticle Layer for Application in Dye-Sensitized Solar Cells. Materials 2019, 12, 4060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borella, L.; Vesce, L.; Mariani, P.; Barichello, J.; di Carlo, A.; Trivellin, N.; Sforza, E. Spectral Changes by Dye Sensitized Solar Modules Influence the Pigment Composition and Productivity of Arthrospira maxima and Increase the Overall Energy Efficiency. Adv. Sustain. Syst. 2022, 2100346. [Google Scholar] [CrossRef]
- O’Reagan, B.; Grätzel, M. A low-cost, high-efficiency Solar-Cell based on Dye-Sensitized Colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye Sensitized Solar Cell. Chem. Rev. 2010, 110, 6595–6663. [Google Scholar] [CrossRef]
- Calogero, G.; Bartolotta, A.; di Marco, G.; di Carlo, A.; Bonaccorso, F. Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 2015, 44, 3244. [Google Scholar] [CrossRef]
- Bellani, S.; Bartolotta, A.; Agresti, A.; Calogero, G.; Grancini, G.; di Carlo, A.; Kymakis, E.; Bonaccorso, F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 2021, 50, 11870–11965. [Google Scholar] [CrossRef]
- Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 2015, 51, 15894–15897. [Google Scholar] [CrossRef]
- Kato, N.; Higuchi, K.; Tanaka, H.; Nakajima, J.; Sano, T.; Toyoda, T. Improvement in long-term stability of dye-sensitized solar cell for outdoor use. Sol. Energy Mater. Sol. Cells 2011, 95, 301–305. [Google Scholar] [CrossRef]
- Calogero, G.; Barichello, J.; Citro, I.; Mariani, P.; Vesce, L.; Bartolotta, A.; di Carlo, A.; di Marco, G. Photoelectrochemical and spectrophotometric studies on dye-sensitized solar cells (DSCs) and stable modules (DSCMs) based on natural apocarotenoids pigments. Dye. Pigment. 2018, 155, 75–83. [Google Scholar] [CrossRef]
- Barichello, J.; Vesce, L.; Mariani, P.; Leonardi, E.; Braglia, R.; di Carlo, A.; Canini, A.; Reale, A. Stable Semi-Transparent Dye-Sensitized Solar Modules and Panels for Greenhouse Application. Energies 2021, 14, 6393. [Google Scholar] [CrossRef]
- Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P. Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine. J. Phys. Chem. C 2009, 113, 6290–6297. [Google Scholar] [CrossRef]
- Perganti, D.; Giannouri, M.; Kontos, A.G.; Falaras, P. Cost-efficient platinum-free DSCs using colloidal graphite counterelectrodes combined with D35 organic dye and cobalt (II/III) redox Couple. Electrochim. Acta 2017, 232, 517–527. [Google Scholar] [CrossRef]
- Yella, A.; Mathew, S.; Aghazada, S.; Comte, P.; Gratzel, M.; Khaja, M.; Nazeeruddin. Dye-sensitized solar cells using cobalt electrolytes: The influence of porosity and pore size to achieve high-efficiency. J. Mater. Chem. C 2017, 5, 2833. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Parashar, P.K.; Swami, S.K.; Komarala, V.K.; Dutta, V. Enhancement of Y123 dye-sensitized solar cells performance using plasmonic gold nanorods. Phys. Chem. Chem. Phys. 2018, 20, 9651–9658. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, Y.; Bahng, H.W.; Cao, Y.; Yi, C.; Saygili, Y.; Luo, J.; Liu, Y.; Kavan, L.; Moser, J.E.; et al. Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells. Energy Environ. Sci. 2018, 11, 1779. [Google Scholar] [CrossRef] [Green Version]
- Putri, T.E.; Chawarambwa, F.L.; Son, M.K.; Attri, P.; Kamataki, K.; Itagaki, N.; Koga, K.; Shiratani, M. Performance Characteristics of Bifacial Dye-Sensitized Solar Cells with a V-Shaped Low-Concentrating Light System. ACS Appl. Energy Mater. 2021, 4, 13410–13414. [Google Scholar] [CrossRef]
- Xu, T.; Kong, D.; Tang, H.; Qin, X.; Li, X.; Gurung, A.; Kou, K.; Chen, L.; Qiao, Q.; Huang, W. Transparent MoS2/PEDOT Composite Counter Electrodes for Bifacial Dye-Sensitized Solar Cells. ACS Omega, 2020; 5, 8687–8696. [Google Scholar]
- Xia, J.; Wang, Q.; Xu, Q.; Yu, R.; Chen, L.; Jiao, J.; Fana, S.; Wu, H. High efficiency bifacial quasi-solid-state dye-sensitized solar cell based on CoSe2 nanorod counter electrode. Appl. Surf. Sci. 2020, 530, 147238. [Google Scholar] [CrossRef]
- Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 1176–1188. [Google Scholar] [CrossRef]
- Barichello, J.; Mariani, P.; Matteocci, F.; Vesce, L.; Reale, A.; Di Carlo, A.; Lanza, M.; Di Marco, G.; Polizzi, S.; Calogero, G. The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells. Nanomaterials 2022, 12, 267. [Google Scholar] [CrossRef] [PubMed]
- Mariani, P.; Vesce, L.; di Carlo, A. The role of printing techniques for large-area dye sensitized solar cells. Semicond. Sci. Technol. 2015, 30, 104003. [Google Scholar] [CrossRef]
- Chaitanya, K.; Ju, X.; Heron, B.M. Can elongation of the p-system in triarylamine derived sensitizers with either benzothiadiazole and/or ortho-fluorophenyl moieties enrich their light harvesting efficiency? –A theoretical study. RSC Adv. 2015, 5, 3978–3998. [Google Scholar] [CrossRef]
- Kumar Chandiran, A.; Zakeeruddin, S.M.; Humphry-Baker, R.; Khaja Nazeeruddin, M.; Grätzel, M.; Sauvage, F. Investigation on the Interface Modification of TiO2 Surfaces by Functional Co-Adsorbents for High-Efficiency Dye-Sensitized Solar Cells. ChemPhysChem 2017, 18, 2724–2731. [Google Scholar] [CrossRef] [Green Version]
- Listorti, A.; O’Regan, B.; Durrant, J.R. Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chem. Mater. 2011, 23, 3381–3399. [Google Scholar] [CrossRef]
- Capasso, A.; Bellani, S.; Palma, A.L.; Najafi, L.; Del Rio Castillo, A.E.; Curreli, N.; Cinà, L.; Miseikis, V.; Coletti, C.; Calogero, G.; et al. CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Mater. 2019, 6, 035007. [Google Scholar] [CrossRef]
- Venkatesan, S.; Lin, W.H.; Teng, H.; Le, Y.H. High-Efficiency Bifacial Dye-Sensitized Solar Cells for Application under Indoor Light Conditions. ACS Appl. Mater. Interfaces 2019, 11, 42780–42789. [Google Scholar] [CrossRef]
- Kang, M.G.; Park, N.G.; Ryu, K.S.; Chang, S.H.; Kim, K.J. A 4.2% efficient flexible dye-sensitized TiO2 solar cell using stainless steel substrate. Sol. Energy Mater. Sol. Cells 2006, 90, 574–581. [Google Scholar] [CrossRef]
- Shaban, S.; Roy, P.; Vats, A.K.; Pandey, S.S. Bifacial dye-sensitized solar cells utilizing green-colored NIR sensitive unsymmetrical squaraine dye. Jpn. J. Appl. Phys. 2022, 61, SB1005. [Google Scholar] [CrossRef]
- Kalyanasundaram, K. Chapter 8, How to make high-efficiency dye-sensitized solar cells. In Dye-Sensitized Solar Cell, 1st ed.; EPFL Press Taylor e Francis Group: Lausanne, Switzerland, 2010; pp. 263–264. [Google Scholar]
Electrolyte | Sample * | PCE (%) | Bifaciality Factor (%) | Jsc (mA/cm2) | Voc (Volt) | FF (%) | IPCE (%) |
---|---|---|---|---|---|---|---|
J8* | B_C106_Front | 5.61 | 75 | 13.94 | 0.66 | 61 | 100 |
B_C106_Rear | 4.19 | 9.62 | 0.66 | 66 | 75 | ||
W_C106_Front | 8.11 | 93 | 21.07 | 0.7 | 55 | / | |
W_C106_Rear | 7.58 | 19.34 | 0.7 | 56 | / | ||
B_Y123_Front | 4.92 | 42 | 9.78 | 0.7 | 72 | 85 | |
B_Y123_Rear | 2.07 | 3.93 | 0.7 | 75 | 40 | ||
W_Y123_Front | 6.48 | 72 | 13.24 | 0.71 | 69 | / | |
W_Y123_Rear | 4.67 | 9.15 | 0.71 | 72 | / | ||
HSE | B_C106_Front | 4.83 | 61 | 11.99 | 0.66 | 61 | 84 |
B_C106_Rear | 2.95 | 6.42 | 0.66 | 69 | 53 | ||
W_C106_Front | 6.74 | 84 | 16.8 | 0.68 | 59 | / | |
W_C106_Rear | 5.63 | 13.76 | 0.66 | 62 | / | ||
B_Y123_Front | 3.77 | 58 | 8.52 | 0.66 | 67 | 75 | |
B_Y123_Rear | 2.17 | 4.63 | 0.67 | 70 | 34 | ||
W_Y123_Front | 5.26 | 82 | 12.28 | 0.68 | 63 | / | |
W_Y123_Rear | 4.34 | 9.64 | 0.68 | 66 | / |
Sample | PCE (%) | Jsc (mA/cm2) | Voc (Volt) | FF (%) |
---|---|---|---|---|
B_C106 | 5.90 | 12.20 | 0.72 | 61 |
W_C106 | 10.28 | 22.69 | 0.71 | 63 |
B_Y123 | 6.34 | 12.50 | 0.70 | 70 |
W_Y123 | 12.78 | 26.68 | 0.77 | 62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barichello, J.; Gullace, S.; Cusimano, A.; Di Marco, G.; Matteocci, F.; Calogero, G. A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells. Appl. Sci. 2022, 12, 3159. https://doi.org/10.3390/app12063159
Barichello J, Gullace S, Cusimano A, Di Marco G, Matteocci F, Calogero G. A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells. Applied Sciences. 2022; 12(6):3159. https://doi.org/10.3390/app12063159
Chicago/Turabian StyleBarichello, Jessica, Sara Gullace, Alberto Cusimano, Gaetano Di Marco, Fabio Matteocci, and Giuseppe Calogero. 2022. "A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells" Applied Sciences 12, no. 6: 3159. https://doi.org/10.3390/app12063159
APA StyleBarichello, J., Gullace, S., Cusimano, A., Di Marco, G., Matteocci, F., & Calogero, G. (2022). A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells. Applied Sciences, 12(6), 3159. https://doi.org/10.3390/app12063159