Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review
Abstract
:1. Introduction
2. Purple Carrot and Its Nutritional Value
3. Purple Carrot and Prevention of MetS and Cancers
3.1. Anti-Diabetic Potential of the Purple Carrot
3.2. Anti-Obesity and Cardioprotective Potential of Purple Carrot
3.3. Anti-Inflammatory and Anti-Cancer Potential of Purple Carrot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capomolla, A.S.; Janda, E.; Paone, S.; Parafati, M.; Sawicki, T.; Mollace, R.; Ragusa, S.; Mollace, V. Atherogenic Index Reduction and Weight Loss in Metabolic Syndrome Patients Treated with A Novel Pectin-Enriched Formulation of Bergamot Polyphenols. Nutrients 2019, 11, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scuteri, A.; Laurent, S.; Cucca, F.; Cockcroft, J.; Cunha, P.G.; Mañas, L.R.; Raso, F.U.M.; Muiesan, M.L.; Ryliškytė, L.; Rietzschel, E.; et al. Metabolic syndrome across Europe: Different clusters of risk factors. Eur. J. Prev. Cardiol. 2015, 22, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzawa, Y.; Funahashi, T.; Nakamura, T. The Concept of Metabolic Syndrome: Contribution of Visceral Fat Accumulation and Its Molecular Mechanism. J. Atheroscler. Thromb. 2011, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ryckman, K.; Smith, C. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab. Syndr. Obes. Targets Ther. 2015, 8, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, J.; Kakehi, E.; Kotani, K.; Kayaba, K.; Nakamura, Y.; Ishikawa, S. Metabolic syndrome is a risk factor for cancer mortality in the general Japanese population: The Jichi Medical School Cohort Study. Diabetol. Metab. Syndr. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Bellastella, G.; Scappaticcio, L.; Esposito, K.; Giugliano, D.; Ida, M. Metabolic syndrome and cancer : ‘‘The common soil hypothesis ”. Diabetes Res. Clin. Pract. 2018, I, 389–397. [Google Scholar] [CrossRef]
- Reedy, J.; Krebs-smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher Diet Quality Is Associated with Decreased Risk of All-Cause, Cardiovascular Disease, and Cancer Mortality among Older Adults. J. Nutr. Nutr. Epidemiol. 2014, 2, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Braun, S.; Bitton-worms, K.; Leroith, D. The Link between the Metabolic Syndrome and Cancer. Int. J. Biol. Sci. 2011, 7, 1003–1015. [Google Scholar] [CrossRef]
- WHO. Cancer. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer. (accessed on 13 February 2022).
- de, A. Boleti, A.; Almeida, J.; Migliolo, L. Impact of the metabolic syndrome on the evolution of neurodegenerative diseases. Neural Regen. Res. 2021, 16, 688. [Google Scholar] [CrossRef]
- Kim, S.K.; Hong, S.-H.; Chung, J.-H.; Cho, K.B. Association between Alcohol Consumption and Metabolic Syndrome in a Community-Based Cohort of Korean Adults. Clin. Res. 2017, 23, 2104–2110. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Niratharakumar, K.; Gokhale, K.; Tahrani, A.A.; Taverner, T.; Thomas, G.N. Obesity Without Metabolic Abnormality and Incident CKD: A Population-Based British Cohort Study. Am. J. Kidney Dis. 2022, 79, 24–35.e1. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years The GBD 2015 Obesity Collaborators. N. Engl. J. Med. 2017, 377, 1990. [Google Scholar]
- Ogden, C.L.; Carroll, M.D.; Lawman, H.G.; Fryar, C.D.; Kruszon-moran, D.; Kit, B.K.; Flegal, K.M. Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988-1994 Through 2013-2014. JAMA-J. Am. Med. Assoc. 2016, 315, 2292–2299. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J.; Lim, S.; Ha, H.; Kwon, H.; Park, Y.; Lee, W.; Kang, M.; Yim, H.; Yoon, K.; et al. Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. J. Diabetes Investig. 2013, 4, 334–343. [Google Scholar] [CrossRef]
- Soares, G.R.; de Moura, C.F.G.; Silva, M.J.D.; Vilegas, W.; Santamarina, A.B.; Pisani, L.P.; Estadella, D.; Ribeiro, D.A. Protective effects of purple carrot extract (Daucus carota) against rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Med. Oncol. 2018, 35, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassi, M.G. Metabolic syndrome, diabetes and atherosclerosis: Influence of gene – environment interaction. Mutat. Res. Mol. Mech. Mutagen. 2009, 667, 35–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pillon, N.J.; Loos, R.J.F.; Marshall, S.M.; Zierath, J.R. Metabolic consequences of obesity and type 2 diabetes : Balancing genes and environment for personalized care. Cell 2021, 184, 1530–1544. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Lee, J.; Shin, E.; Kwon, H.; Choe, E.K.; Choi, S.-Y.; Rhee, H.; Choi, S.H. Genome-wide association study of metabolic syndrome in Korean populations. PLoS ONE 2020, 15, e0227357. [Google Scholar] [CrossRef]
- Divella, R.; Daniele, A.; Mazzocca, A.; Abbate, I.; Casamassima, P.; Ruggeri, E.; Naglieri, E.; Sabbà, C.; Luca, R. De ADIPOQ rs266729 G/C gene polymorphism and plasmatic adipocytokines connect metabolic syndrome to colorectal cancer. J. Cancer 2017, 8, 1000–1008. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Osei-Yeboah, J.; Owiredu, W.K.B.A.; Norgbe, G.K.; Yao Lokpo, S.; Gyamfi, J.; Alote Allotey, E.; Asumbasiya Aduko, R.; Noagbe, M.; Attah, F.A. The Prevalence of Metabolic Syndrome and Its Components among People with Type 2 Diabetes in the Ho Municipality, Ghana: A Cross-Sectional Study. Int. J. Chronic Dis. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.; Soares, M.J.; Mohan, V.; Anoop, S.; Abhishek, V.; Vaidya, R.; Pradeepa, R. Body fat, metabolic syndrome and hyperglycemia in South Asians. J. Diabetes Complicat. 2018, 32, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Stout, M.B.; Justice, J.N.; Nicklas, B.J.; Kirkland, J.L. Physiological Aging: Links among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology 2017, 32, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Garralda-Del-Villar, M.; Carlos-Chillerón, S.; Diaz-Gutierrez, J.; Ruiz-Canela, M.; Gea, A.; Martínez-González, M.; Bes-Rastrollo, M.; Ruiz-Estigarribia, L.; Kales, S.; Fernández-Montero, A. Healthy Lifestyle and Incidence of Metabolic Syndrome in the SUN Cohort. Nutrients 2018, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Niazi, G.; Adnan, F.; Saleemi, M.; Akhtar, A.; Ahmed, N.; Shehzad, S. Severe Coronary Artery Disease and Metabolic Syndrome in Patients with Acute Coronary Syndrome in South Punjab Region of Pakistan. Eur. J. Cardiovasc. Med. 2020. [Google Scholar] [CrossRef]
- Herningtyas, E.H.; Ng, T.S. Prevalence and distribution of metabolic syndrome and its components among provinces and ethnic groups in Indonesia. BMC Public Health 2019, 19, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.-H.; Li, R.-H.; Huang, S.-L.; Sia, H.-K.; Chen, Y.-L.; Tang, F.-C. Lifestyle Factors and Metabolic Syndrome among Workers: The Role of Interactions between Smoking and Alcohol to Nutrition and Exercise. Int. J. Environ. Res. Public Health 2015, 12, 15967–15978. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, U.; Cummins, E. Factors in fluencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res. Int. J. 2013, 50, 497–506. [Google Scholar] [CrossRef]
- Que, F.; Hou, X.-L.; Wang, G.-L.; Xu, Z.-S.; Tan, G.-F.; Li, T.; Wang, Y.-H.; Khadr, A.; Xiong, A.-S. Advances in research on the carrot, an important root vegetable in the Apiaceae family. Hortic. Res. 2019, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawid, C.; Dunemann, F.; Schwab, W.; Nothnagel, T.; Hofmann, T. Bioactive C 17 -Polyacetylenes in Carrots (Daucus carota L.): Current Knowledge and Future Perspectives. J. Agric. Food Chem. 2015, 63, 9211–9222. [Google Scholar] [CrossRef] [PubMed]
- Erten, H.; Tanguler, H.; Canbaş, A. A Traditional Turkish Lactic Acid Fermented Beverage: Shalgam (Salgam). Food Rev. Int. 2008, 24, 352–359. [Google Scholar] [CrossRef]
- Ekici, L.; Ozturk, I.; Karaman, S.; Caliskan, O.; Tornuk, F.; Sagdic, O.; Yetim, H. Effects of black carrot concentrate on some physicochemical, textural, bioactive, aroma and sensory properties of sucuk, a traditional Turkish dry-fermented sausage. LWT-Food Sci. Technol. 2015, 62, 718–726. [Google Scholar] [CrossRef]
- Koley, T.K.; Srivastava, S.; Tripathi, Y.B.; Banerjee, K.; Oulkar, D.; Goon, A.; Tripathi, A.; Singh, B. High-Resolution LCMS Profiling of Phenolic Compounds of Indian Black Carrot and Evaluation of Its Effect on Antioxidant Defense and Glucose Metabolism in Animal Model. Agric. Res. 2019, 8, 481–489. [Google Scholar] [CrossRef]
- Leja, M.; Kamińska, I.; Kramer, M.; Maksylewicz-Kaul, A.; Kammerer, D.; Carle, R.; Baranski, R. The Content of Phenolic Compounds and Radical Scavenging Activity Varies with Carrot Origin and Root Color. Plant Foods Hum. Nutr. 2013, 68, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, M.Q.; Akhtar, S.; Imran, M.; Riaz, M.; Rauf, A.; Mubarak, M.S.; Bawazeer, S.; Bawazeer, S.S.; Hassanien, M.F. Antibacterial and anticancer characteristics of black carrot (Daucus carota) extracts. J. Med. Spice Plants 2018, 22, 40–44. [Google Scholar]
- Kamiloglu, S.; Van Camp, J.; Capanoglu, E. Black carrot polyphenols: Effect of processing, storage and digestion—An overview. Phytochem. Rev. 2018, 17, 379–395. [Google Scholar] [CrossRef]
- Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and Their Health Benefits—Review Article. Foods 2019, 8, 424. [Google Scholar] [CrossRef] [Green Version]
- Yahia, E.M. Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of Volatiles, Phenolics, Sugars, Antioxidant Vitamins, and Sensory Quality of Different Colored Carrot Varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef]
- Smeriglio, A.; Denaro, M.; Barreca, D.; D’Angelo, V.; Germanò, M.P.; Trombetta, D. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia 2018, 124, 49–57. [Google Scholar] [CrossRef]
- Lee, E.J.; Yoo, K.S.; Patil, B.S. Total carotenoid, anthocyanin, and sugar contents in sliced or whole purple (cv. Betasweet) and orange carrots during 4-week cold storage. Hortic. Environ. Biotechnol. 2011, 52, 402–407. [Google Scholar] [CrossRef]
- Luby, C.H.; Goldman, I.L. Release of Eight Open Source Carrot (Daucus carota var. sativa) Composite Populations Developed under Organic Conditions. HortScience 2016, 51, 448–450. [Google Scholar] [CrossRef] [Green Version]
- Esatbeyoglu, T.; Rodríguez-Werner, M.; Schlösser, A.; Liehr, M.; Ipharraguerre, I.; Winterhalter, P.; Rimbach, G. Fractionation of Plant Bioactives from Black Carrots (Daucus carota subspecies sativus varietas atrorubens Alef.) by Adsorptive Membrane Chromatography and Analysis of Their Potential Anti-Diabetic Activity. J. Agric. Food Chem. 2016, 64, 5901–5908. [Google Scholar] [CrossRef]
- Park, S.; Kang, S.; Jeong, D.-Y.; Jeong, S.-Y.; Park, J.J.; Yun, H.S. Cyanidin and malvidin in aqueous extracts of black carrots fermented with Aspergillus oryzae prevent the impairment of energy, lipid and glucose metabolism in estrogen-deficient rats by AMPK activation. Genes Nutr. 2015, 10, 6. [Google Scholar] [CrossRef]
- Blando, F.; Marchello, S.; Maiorano, G.; Durante, M.; Signore, A.; Laus, M.N.; Soccio, M.; Mita, G. Bioactive Compounds and Antioxidant Capacity in Anthocyanin-Rich Carrots: A Comparison between the Black Carrot and the Apulian Landrace “Polignano” Carrot. Plants 2021, 10, 564. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Ciborska, J.; Tańska, M.; Narwojsz, A.; Starowicz, M.; Przybyłowicz, K.E.; Sawicki, T. The Impact of the Method Extraction and Different Carrot Variety on the Carotenoid Profile, Total Phenolic Content and Antioxidant Properties of Juices. Plants 2020, 9, 1759. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.P.; Kreutzmann, S. Determination of polyacetylenes in carrot roots (Daucus carota L.) by high-performance liquid chromatography coupled with diode array detection. J. Sep. Sci. 2007, 30, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Baranska, M.; Schulz, H.; Baranski, R.; Nothnagel, T.; Christensen, L.P. In Situ Simultaneous Analysis of Polyacetylenes, Carotenoids and Polysaccharides in Carrot Roots. J. Agric. Food Chem. 2005, 53, 6565–6571. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Suleria, H.A.R.; Dunshea, F.R.; Howell, K. Dietary Lipids Influence Bioaccessibility of Polyphenols from Black Carrots and Affect Microbial Diversity under Simulated Gastrointestinal Digestion. Antioxidants 2020, 9, 762. [Google Scholar] [CrossRef]
- Garba, U.; Kaur, S.; Gurumayum, S.; Rasane, P. Effect of Hot Water Blanching Time and Drying Temperature on The Thin Layer Drying Kinetics and Anthocyanin Degradation of Black Carrot (Daucus carota l.) Shreds. Food Technol. Biotechnol. 2015, 53, 324–330. [Google Scholar] [CrossRef]
- Xiao, J.B.; Hogger, P. Dietary Polyphenols and Type 2 Diabetes: Current Insights and Future Perspectives. Curr. Med. Chem. 2014, 22, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Sevimli-Gur, C.; Cetin, B.; Akay, S.; Gulce-Iz, S.; Yesil-Celiktas, O. Extracts from Black Carrot Tissue Culture as Potent Anticancer Agents. Plant Foods Hum. Nutr. 2013, 68, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Esposito, D.; Chen, A.; Grace, M.H.; Komarnytsky, S.; Lila, M.A. Inhibitory Effects of Wild Blueberry Anthocyanins and Other Flavonoids on Biomarkers of Acute and Chronic Inflammation in Vitro. J. Agric. Food Chem. 2014, 62, 7022–7028. [Google Scholar] [CrossRef]
- Poudyal, H.; Panchal, S.; Brown, L. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. Br. J. Nutr. 2010, 104, 1322–1332. [Google Scholar] [CrossRef] [Green Version]
- Olejnik, A.; Kowalska, K.; Kidoń, M.; Czapski, J.; Rychlik, J.; Olkowicz, M.; Dembczyński, R. Purple carrot anthocyanins suppress lipopolysaccharide-induced inflammation in the co-culture of intestinal Caco-2 and macrophage RAW264.7 cells. Food Funct. 2016, 7, 557–564. [Google Scholar] [CrossRef]
- Baranska, M.; Roman, M.; Dobrowolski, J.C.; Schulz, H.; Baranski, R. Recent Advances in Raman Analysis of Plants: Alkaloids, Carotenoids, and Polyacetylenes. Curr. Anal. Chem. 2012, 9, 108–127. [Google Scholar] [CrossRef]
- Ayoub, H.M.; McDonald, M.R.; Sullivan, J.A.; Tsao, R.; Platt, M.; Simpson, J.; Meckling, K.A. The Effect of Anthocyanin-Rich Purple Vegetable Diets on Metabolic Syndrome in Obese Zucker Rats. J. Med. Food 2017, 20, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, H.M.; Mcdonald, M.R.; Sullivan, J.A.; Tsao, R.; Meckling, K.A. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables. Nutrients 2018, 10, 465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahesh, M.; Bharathi, M.; Raja Gopal Reddy, M.; Pappu, P.; Putcha, U.K.; Vajreswari, A.; Jeyakumar, S.M. Carrot juice ingestion attenuates high fructose-induced circulatory pro-inflammatory mediators in weanling Wistar rats. J. Sci. Food Agric. 2017, 97, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, A.; Rychlik, J.; Kidoń, M.; Czapski, J.; Kowalska, K.; Juzwa, W.; Olkowicz, M.; Dembczyński, R.; Moyer, M.P. Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem. 2016, 190, 1069–1077. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Yuan, Y.; Sun, Y.; Qin, Y.; Deng, Z. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D -Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats. Biol. Trace Elem. Res. 2016, 173, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Netzel, M.; Netzel, G.; Kammerer, D.R.; Schieber, A.; Carle, R.; Simons, L.; Bitsch, I.; Bitsch, R.; Konczak, I. Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov. Food Sci. Emerg. Technol. 2007, 8, 365–372. [Google Scholar] [CrossRef]
- Karkute, S.G.; Koley, T.K.; Yengkhom, B.K.; Tripathi, A.; Srivastava, S.; Maurya, A.; Singh, B. Anti-diabetic Phenolic Compounds of Black Carrot (Daucus carota Subspecies sativus var. atrorubens Alef.) Inhibit Enzymes of Glucose Metabolism: An in silico and in vitro Validation. Med. Chem. 2018, 14, 641–649. [Google Scholar] [CrossRef]
- Kaeswurm, J.A.H.; Könighofer, L.; Hogg, M.; Scharinger, A.; Buchweitz, M. Impact of B-Ring Substitution and Acylation with Hydroxy Cinnamic Acids on the Inhibition of Porcine α-Amylase by Anthocyanin-3-Glycosides. Foods 2020, 9, 367. [Google Scholar] [CrossRef] [Green Version]
- Kammerer, D.; Carle, R.; Schieber, A. Quantification of anthocyanins in black carrot extracts (Daucus carota ssp. sativus var. atrorubens Alef.) and evaluation of their color properties. Eur. Food Res. Technol. 2004, 219, 479–486. [Google Scholar] [CrossRef]
- Park, S.; Kang, S.; Jeong, D.-Y.; Jeong, S.-Y.; Kim, M.J. Black carrots fermented with Lactobacillus plantarum or Aspergillus oryzae prevent cognitive dysfunction by improving hippocampal insulin signalling in amyloid-β infused rats. J. Funct. Foods 2016, 25, 354–366. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Rasmussen, M.K.; Christensen, L.P.; Young, J.F.; Kristiansen, K.; Oksbjerg, N. Naringenin and falcarinol stimulate glucose uptake and TBC1D1 phosphorylation in porcine myotube cultures. J. Biochem. Pharmacol. Res. 2014, 2, 91–98. [Google Scholar]
- Dragano, N.R.; Cintra, D.E.; Solon, C.; Morari, J.; Leite-Legatti, A.V.; Velloso, L.A.; Maróstica-Júnior, M.R. Freeze-dried jaboticaba peel powder improves insulin sensitivity in high-fat-fed mice. Br. J. Nutr. 2013, 110, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, F.Y.; Baser, G.M.; Özcan, E.; Üstündağ, Ö.G.; Korachi, M.; Sofu, A.; Blumberg, J.B.; Chen, C.-Y.O. Characterization of chemical, biological, and antiproliferative properties of fermented black carrot juice, shalgam. Eur. Food Res. Technol. 2016, 242, 1355–1368. [Google Scholar] [CrossRef]
- Mannan, S. The Effect of Habitual Consumption of Anthocyanin-Rich Foodstuffs on Cardiovascular Health in At-Risk Individuals. Ph.D. Thesis, University of Guelph, Guelph, ON, USA, 2015; pp. 1–74. [Google Scholar]
- Buijsse, B.; Feskens, E.J.M.; Kwape, L.; Kok, F.J.; Kromhout, D. Both α- and β-Carotene, but Not Tocopherols and Vitamin C, Are Inversely Related to 15-Year Cardiovascular Mortality in Dutch Elderly Men. J. Nutr. 2008, 138, 344–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, O.R.L.; Netzel, G.A.; Sakzewski, A.R. A randomized, double-blind, placebo-controlled trial of the effect of dried purple carrot on body mass, lipids, blood pressure, body composition, and inflammatory markers in overweight and obese adults: The QUENCH Trial. Can. J. Physiol. Pharmacol. 2013, 91, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Blando, F.; Calabriso, N.; Berland, H.; Maiorano, G.; Gerardi, C.; Carluccio, M.; Andersen, Ø. Radical Scavenging and Anti-Inflammatory Activities of Representative Anthocyanin Groupings from Pigment-Rich Fruits and Vegetables. Int. J. Mol. Sci. 2018, 19, 169. [Google Scholar] [CrossRef] [Green Version]
- Butalla, A.C.; Crane, T.E.; Patil, B.; Wertheim, B.C.; Thompson, P.; Thomson, C.A. Effects of a Carrot Juice Intervention on Plasma Carotenoids, Oxidative Stress, and Inflammation in Overweight Breast Cancer Survivors. Nutr. Cancer 2012, 64, 331–341. [Google Scholar] [CrossRef]
- Jing, P.; Bomser, J.A.; Schwartz, S.J.; He, J.; Magnuson, B.A.; Giusti, M.M. Structure–Function Relationships of Anthocyanins from Various Anthocyanin-Rich Extracts on the Inhibition of Colon Cancer Cell Growth. J. Agric. Food Chem. 2008, 56, 9391–9398. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Grootaert, C.; Capanoglu, E.; Ozkan, C.; Smagghe, G.; Raes, K.; Van Camp, J. Anti-inflammatory potential of black carrot (Daucus carota L.) polyphenols in a co-culture model of intestinal Caco-2 and endothelial EA.hy926 cells. Mol. Nutr. Food Res. 2017, 61, 1–11. [Google Scholar] [CrossRef]
- Kitano, A.; Norikura, T.; Matsui-Yuasa, I.; Shimakawa, H.; Kamezawa, M.; Kojima-Yuasa, A. Black Carrot (Daucus carota ssp. sativus var. atrorubens Alef.) Extract Protects against Ethanol-induced Liver Injury via the Suppression of Phosphodiesterase 4 mRNA Expression. Austin J. Nutr. Food Sci. 2021, 9, 1154. [Google Scholar] [CrossRef]
- Metzger, B.T.; Barnes, D.M.; Reed, J.D. Purple Carrot (Daucus carota L.) Polyacetylenes Decrease Lipopolysaccharide-Induced Expression of Inflammatory Proteins in Macrophage and Endothelial Cells. J. Agric. Food Chem. 2008, 56, 3554–3560. [Google Scholar] [CrossRef]
- Zaini, R.G.; Brandt, K.; R. Clench, M.; L. Le Maitre, C. Effects of Bioactive Compounds from Carrots (Daucus carota L.), Polyacetylenes, Beta-Carotene and Lutein on Human Lymphoid Leukaemia Cells. Anticancer. Agents Med. Chem. 2012, 12, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Hamedi, S.; Koosha, M. Designing a pH-responsive drug delivery system for the release of black-carrot anthocyanins loaded in halloysite nanotubes for cancer treatment. Appl. Clay Sci. 2020, 197, 105770. [Google Scholar] [CrossRef]
- Pala, C.; Sevimli-Gur, C.; Yesil-Celiktas, O. Green Extraction Processes Focusing on Maximization of Black Carrot Anthocyanins along with Cytotoxic Activities. Food Anal. Methods 2017, 10, 529–538. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, P.; He, W.; Du, X.; Chen, C.; Suo, L.; Liang, M.; Zhang, N.; Na, A.; Zhang, Y. The Prevention and Inhibition Effect of Anthocyanins on Colorectal Cancer. Curr. Pharm. Des. 2019, 25, 4919–4927. [Google Scholar] [CrossRef] [PubMed]
- Deding, U.; Baatrup, G.; Christensen, L.P.; Kobaek-Larsen, M. Carrot Intake and Risk of Colorectal Cancer: A Prospective Cohort Study of 57,053 Danes. Nutrients 2020, 12, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Components | Nutritional Concentration | Reference |
---|---|---|
Energy | 42 kcal | |
Protein | 0.87 g | |
Fat | 0.14 g | |
Carbohydrates | 8.01 g | [38] |
Total dietary fiber | 2.48 g | |
Iron | 0.26 mg | |
Zinc | 0.15 mg | |
Sodium | 82 mg | |
Potassium | 256 mg | |
Calcium | 33 mg | |
Magnesium | 17 mg | |
Phosphorus | 29 mg | |
Vitamin B1 | 0.029 mg | |
Vitamin B2 | 0.029 mg | |
Vitamin B3 | 1.211 mg | |
Vitamin B6 | 0.072 mg |
Main Group | Type of Component | References |
---|---|---|
Anthocyanins | Cyanidin-3-xylosyl-glucosyl-galactoside, cyanidin-3-xylosyl (coumaroylglucosyl) galactoside, cyanidin-3xylosyl (feruloylglucosyl) galactoside, cyanidin-3xylosyl (sinapoylglucosyl) galactoside, malvidin-3,5diglycosides, peonidin-3xylosylgalactoside, cyanidin-3-rutinosides, delphinidin-3-glucoside | [45,46,47] |
Carotenoids | Lutein, zeaxanthin, α-carotene, 13-cis-β-carotene, β-carotene | [47,48] |
Polyacetylenes | (Z)-heptadeca-1,9-diene-4,6-diyn-3-ol (falcarinol), (Z)-heptadeca-1,9-diene-4,6-diyne-3,8-diol (falcarindiol), (Z)-3-acetoxyheptadeca-1,9-diene-4,6-diyn-8-ol (falcarindiol 3-acetate) | [49,50] |
Phenolic acids | Hydroxybenzoic, protocatecuic, gallic, syringic, chlorogenic, caffeic, cumaric, ferulic | [42,47,51] |
Flavonoids | Flavanones: erodictiol-7-O-glucoside, eriodictiol and naringenin-7-O-glucoside Flavanols: Epicatechin and catechin Flavonols: Kaempferol-3-O-rutinoside and quercetin-3-O-galactoside | [42] |
Main Group | Active Component | Mechanism | References |
---|---|---|---|
Purple carrot | Anthocyanins | Potential anti-diabetic properties, delay glucose absorption by inhibition of the enzymes α-amylase and α-glucosidase | [53] |
Purple carrot extract | Vimentin | Cause poor prognosis in human breast cancer without any side effects by radical scavenging activity | [54] |
Purple carrot | Dietary fiber | Reduction in the secretion of inflammatory biomarkers | [38] |
Purple carrot and its parts | Anthocyanins | Regulate the markers of inflammation by reducing NF-KB signaling via different pathways | [55] |
Purple carrot | Cyanidin, Malvidin | Markedly reduces the accumulation of fat (3T3-L1 cell lines of adipocytes) by reducing SREBP, reducing FAS and enhancing CPT-1 | [46] |
Main Group | Subject | Material and Method | Result | References |
---|---|---|---|---|
Purple carrot juice | Rats | 5% of the whole diet | Reduced lipid profile, cardiac fibrosis, abdominal adiposity, blood pressure (systolic) hepatic steatosis, inflammatory markers and improved glucose tolerance | [56] |
A fermented extract of purple carrot by Aspergillus oryzae | Estrogen-deficient rats | - | Reduces energy impairment, lipid level and improves glucose metabolism | [46] |
Purple carrot extract (fermented with Lactobacillus Plantarum, Aspergillus Oryzae) | Type 2 Diabetes in rats with dementia | Diet containing dextrin (2%), (ovariectomized-control group), purple carrot extract 2% (unfermented), 2% extract of purple carrot fermented by L. plantarum and 2% extract of purple carrot fermented by Aspergillus oryzae for 12 weeks | Improved cognitive ability by improving hippocampal insulin resistance | [68] |
Dried purple carrot | Overweight and obese adults | Anthocyanins (118.5 mg) and phenolic acids (259.2 mg) consumed each day for 4 weeks | Significant alterations in body composition, diet intake, total cholesterol, low-density lipoprotein levels, body composition, blood pressure, appetite, and C-reactive protein levels | [75] |
Purple carrot /Orange carrot | Individuals at risk of cardiovascular disease | 100 g of colored carrot, 2 times/day for 12 weeks | Purple carrots enriched with anthocyanins may improve blood pressure (systolic and diastolic) and triglyceride levels | [73] |
Purple carrot and shalgam juice | - | Reduces the risk of cancer and CVD | [72] | |
Purple carrot juice | Animal model | Juice of purple carrot for thirty days | Reduced SOD activity and blood triglyceride concentration, with no significant changes in plasma glucose | [35] |
Purple carrot | Human | - | Effective against diabetes; cyanidin 3-xylosyl galactoside is an ideal component for the inhibition of enzymes involved in glucose metabolism | [65] |
Purple carrot juice | - | Carrot juice (0.5 mg/mL, 0.7 mg/mL, and 1 mg/mL) | The results showed increased glucose uptake and insulin activity | [69] |
Deep purple carrot (DPC) | - | - | An inhibitory effect was observed on α-glucosidase α-amylase and glucose uptake of cells, thus showing anti-diabetic potential | [45] |
Fresh carrot Juice | Breast cancer survivors | 69, duration of 3 weeks | The result showed enhancement in plasma carotenoid levels and reductions in oxidative stress | [77] |
Lyophilized powder of anthocyanins of purple carrot | Human colorectal cancer cell line | Dose: 0.0 to 2.0 mg/mL | 2.0 mg per mL anthocyanin concentration reduced the 80% growth of cancer cells (HT-29 and HL-60) | [78] |
Purple carrots | - | - | In a dose-dependent manner, reduced nitric oxide production by 65%, without causing any cytotoxicity, in addition to reducing inflammatory markers iNOS, TNF-α, IL-6, and IL-1β | [81] |
Purple carrot extract | - | Acetone and ethanol extracts (50 μg/mL) | Exhibited 8.13% and 30.6% inhibition, respectively. This showed that D. carota extracts contain bioactive compounds that are effective against breast cancer proliferation. | [37] |
Young purple carrot shoot extracts | - | All calli and natural extracts | Against neuro-2A cell line, an increased cytotoxic level was observed (capability of 38 to 46% at 6.25 μg/mL), and an increased IC50 value of 170.13 μg/mL was achieved in normal cells, suggesting that it is a principal component against brain cancer | [54] |
Purple carrot and its parts (peel and pomace) | - | - | Regulates the inflammatory response of TNF-α | [38] |
HNT of purple carrot | - | - | Anti-tumour activity was observed against breast cancer cell lines (HT-29 and MCF-7 cells) in contrast to pure anthocyanins | [83] |
Anthocyanin extract from purple carrot | - | - | The cytotoxic activity against breast carcinoma, alveolar adenocarcinoma, brain cancer, and osteosarcoma was significantly high, with IC50 values < 5.5 μg/mL | [84] |
Purple carrot extract | - | - | Reduces the onset of different oxidative stress-linked disorders | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasheed, H.; Shehzad, M.; Rabail, R.; Kowalczewski, P.Ł.; Kidoń, M.; Jeżowski, P.; Ranjha, M.M.A.N.; Rakha, A.; Din, A.; Aadil, R.M. Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. Appl. Sci. 2022, 12, 3170. https://doi.org/10.3390/app12063170
Rasheed H, Shehzad M, Rabail R, Kowalczewski PŁ, Kidoń M, Jeżowski P, Ranjha MMAN, Rakha A, Din A, Aadil RM. Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. Applied Sciences. 2022; 12(6):3170. https://doi.org/10.3390/app12063170
Chicago/Turabian StyleRasheed, Hina, Maham Shehzad, Roshina Rabail, Przemysław Łukasz Kowalczewski, Marcin Kidoń, Paweł Jeżowski, Muhammad Modassar Ali Nawaz Ranjha, Allah Rakha, Ahmad Din, and Rana Muhammad Aadil. 2022. "Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review" Applied Sciences 12, no. 6: 3170. https://doi.org/10.3390/app12063170
APA StyleRasheed, H., Shehzad, M., Rabail, R., Kowalczewski, P. Ł., Kidoń, M., Jeżowski, P., Ranjha, M. M. A. N., Rakha, A., Din, A., & Aadil, R. M. (2022). Delving into the Nutraceutical Benefits of Purple Carrot against Metabolic Syndrome and Cancer: A Review. Applied Sciences, 12(6), 3170. https://doi.org/10.3390/app12063170