Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression
Abstract
:1. Introduction
2. Characteristics of PVAT
3. The Anti-Inflammatory Role of Ghrelin in Adipose Tissue Macrophage Infiltration in Atherosclerosis
4. The Role of Ghrelin in Inhibiting Proinflammatory Adipokine Secretion
5. Leukocyte–Endothelial Cell–Platelet Interaction
6. Inflammation and Oxidative Stress in PVAT. The Role of Ghrelin in Vasoreactivity
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balakumar, P.; Alqahtani, A.; Khan, N.A.; Alqahtani, T.; Jagadeesh, G. The physiologic and physiopathologic roles of perivascular adipose tissue and its interactions with blood vessels and the renin-angiotensin system. Pharmacol. Res. 2021, 173, 105890. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.; Sena, C.M. Perivascular adipose tissue in age-related vascular disease. Ageing Res. Rev. 2020, 59, 101040. [Google Scholar] [CrossRef] [PubMed]
- Weigle, D.S.; Cummings, D.E.; Newby, P.D.; Breen, P.A.; Frayo, R.S.; Matthys, C.C.; Callahan, H.S.; Purnell, J.Q. Roles of leptin and ghrelin in the loss of body weight caused by a low fat, high carbohydrate diet. J. Clin. Endocrinol. Metab. 2003, 88, 1577–1586. [Google Scholar] [CrossRef]
- Davies, J.S.; Kotokorpi, P.; Eccles, S.R.; Barnes, S.K.; Tokarczuk, P.F.; Allen, S.K.; Whitworth, H.S.; Guschina, I.A.; Evans, B.A.; Mode, A.; et al. Ghrelin induces abdominal obesity via GHS-R-dependent lipid retention. Mol. Endocrinol. 2009, 23, 914–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papotti, M.; Ghe, C.; Cassoni, P.; Catapano, F.; Deghenghi, R.; Ghigo, E.; Muccioli, G. Growth hormone secretagogue binding sites in peripheral human tissues. J. Clin. Endocrinol. Metab. 2000, 85, 3803–3807. [Google Scholar] [CrossRef] [Green Version]
- Kleinz, M.J.; Maguire, J.J.; Skepper, J.N.; Davenport, A.P. Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc. Res. 2006, 69, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Tesauro, M.; Schinzari, F.; Rovella, V.; Di Daniele, N.; Lauro, D.; Mores, N.; Veneziani, A.; Cardillo, C. Ghrelin restores the endothelin 1/nitric oxide balance in patients with obesity-related metabolic syndrome. Hypertension 2009, 54, 995–1000. [Google Scholar] [CrossRef] [Green Version]
- Mengozzi, A.; Masi, S.; Virdis, A. Obesity-Related Endothelial Dysfunction: Moving from classical to emerging mechanisms. Endocr. Metab. Sci. 2020, 1, 100063. [Google Scholar]
- Tesauro, M.; Schinzari, F.; Iantorno, M.; Rizza, S.; Melina, D.; Lauro, D.; Cardillo, C. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation 2005, 112, 2986–2992. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, C.; Kilcoyne, C.M.; Cannon, R.O., 3rd; Panza, J.A. Interactions between nitric oxide and endothelin in the regulation of vascular tone of human resistance vessels in vivo. Hypertension 2000, 35, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Antonopoulos, A.S.; Papanikolaou, P.; Tousoulis, D. The role of perivascular adipose tissue in microvascular function and coronary atherosclerosis. In Microcirculation: From Bench to Bedside; Dorobantu, M., Badimon, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 77–94. [Google Scholar] [CrossRef]
- Acosta, J.R.; Tavira, B.; Douagi, I.; Kulyte, A.; Arner, P.; Ryden, M.; Laurencikiene, J. Human-Specific Function of IL-10 in Adipose Tissue Linked to Insulin Resistance. J. Clin. Endocrinol. Metab. 2019, 104, 4552–4562. [Google Scholar] [CrossRef] [PubMed]
- Contreras, G.A.; Yang, Y.; Flood, E.D.; Garver, H.; Bhattacharya, S.; Fink, G.D.; Watts, S.W. Blood pressure changes PVAT function and transcriptome: Use of the mid-thoracic aorta coarcted rat. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1313–H1324. [Google Scholar] [CrossRef] [PubMed]
- Rajsheker, S.; Manka, D.; Blomkalns, A.L.; Chatterjee, T.K.; Stoll, L.L.; Weintraub, N.L. Crosstalk between perivascular adipose tissue and blood vessels. Curr. Opin. Pharmacol. 2010, 10, 191–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malka, K.T.; Clum, P.; Tero, B.; Huang, C.; Vary, C.; Liaw, L. Perivascular Adipose Tissue Surrounding Healthy and Diseased Human Aorta Represent Two Distinct Populations of Adipocytes. J. Vasc. Surg. 2021, 74, e325–e326. [Google Scholar]
- Verhagen, S.N.; Vink, A.; van der Graaf, Y.; Visseren, F.L. Coronary perivascular adipose tissue characteristics are related to atherosclerotic plaque size and composition. A post-mortem study. Atherosclerosis 2012, 225, 99–104. [Google Scholar] [CrossRef]
- Verhagen, S.N.; Buijsrogge, M.P.; Vink, A.; van Herwerden, L.A.; van der Graaf, Y.; Visseren, F.L. Secretion of adipocytokines by perivascular adipose tissue near stenotic and non-stenotic coronary artery segments in patients undergoing CABG. Atherosclerosis 2014, 233, 242–247. [Google Scholar] [CrossRef]
- Shan, B.; Shao, M.; Zhang, Q.; Hepler, C.; Paschoal, V.A.; Barnes, S.D.; Vishvanath, L.; An, Y.A.; Jia, L.; Malladi, V.S.; et al. Perivascular mesenchymal cells control adipose-tissue macrophage accrual in obesity. Nat. Metab. 2020, 2, 1332–1349. [Google Scholar] [CrossRef]
- Choi, K.; Roh, S.G.; Hong, Y.H.; Shrestha, Y.B.; Hishikawa, D.; Chen, C.; Kojima, M.; Kangawa, K.; Sasaki, S. The role of ghrelin and growth hormone secretagogues receptor on rat adipogenesis. Endocrinology 2003, 144, 754–759. [Google Scholar] [CrossRef] [Green Version]
- Lelis, D.F.; Freitas, D.F.; Machado, A.S.; Crespo, T.S.; Santos, S.H.S. Angiotensin-(1–7), Adipokines and Inflammation. Metabolism 2019, 95, 36–45. [Google Scholar] [CrossRef]
- Yasuda, T.; Masaki, T.; Kakuma, T.; Yoshimatsu, H. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci. Lett. 2003, 349, 75–78. [Google Scholar] [CrossRef]
- Ukkola, O. Ghrelin and atherosclerosis. Curr. Opin. Lipidol. 2015, 26, 288–291. [Google Scholar] [CrossRef] [PubMed]
- Achike, F.I.; To, N.H.; Wang, H.; Kwan, C.Y. Obesity, metabolic syndrome, adipocytes and vascular function: A holistic viewpoint. Clin. Exp. Pharmacol. Physiol. 2011, 38, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Avallone, R.; Demers, A.; Rodrigue-Way, A.; Bujold, K.; Harb, D.; Anghel, S.; Wahli, W.; Marleau, S.; Ong, H.; Tremblay, A. A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway. Mol. Endocrinol. 2006, 20, 3165–3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, W.; Wu, M.; Chen, L.; Jiang, B.; Mu, M.; Liu, L.; Yuan, Z. Ghrelin ameliorates atherosclerosis by inhibiting endoplasmic reticulum stress. Fundam. Clin. Pharmacol. 2017, 31, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhou, Q.; Gao, A.; Chen, L.; Li, L. Endoplasmic reticulum stress and focused drug discovery in cardiovascular disease. Clin. Chim. Acta 2020, 504, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Ringel, C.; Dittrich, J.; Gaudl, A.; Schellong, P.; Beuchel, C.F.; Baber, R.; Beutner, F.; Teren, A.; Engel, C.; Wirkner, K.; et al. Association of plasma trimethylamine N-oxide levels with atherosclerotic cardiovascular disease and factors of the metabolic syndrome. Atherosclerosis 2021, 335, 62–67. [Google Scholar] [CrossRef]
- Lin, X.; Ouyang, S.; Zhi, C.; Li, P.; Tan, X.; Ma, W.; Yu, J.; Peng, T.; Chen, X.; Li, L.; et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch. Biochem. Biophys. 2022, 715, 109098. [Google Scholar] [CrossRef]
- Carbone, F.; Mach, F.; Montecucco, F. The role of adipocytokines in atherogenesis and atheroprogression. Curr. Drug Targets 2015, 16, 295–320. [Google Scholar] [CrossRef]
- Virdis, A.; Lerman, L.O.; Regoli, F.; Ghiadoni, L.; Lerman, A.; Taddei, S. Human Ghrelin: A Gastric Hormone with Cardiovascular Properties. Curr. Pharm. Des. 2016, 22, 52–58. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Pan, Z.; Ou, T.; Ma, J.; Liu, H.; Li, R.; Yang, P.; Han, W.; Guan, S.; et al. AMPK/NF-kappaB signaling pathway regulated by ghrelin participates in the regulation of HUVEC and THP1 Inflammation. Mol. Cell. Biochem. 2018, 437, 45–53. [Google Scholar] [CrossRef]
- Yuan, M.J.; Li, W.; Zhong, P. Research progress of ghrelin on cardiovascular disease. Biosci. Rep. 2021, 41, BSR20203387. [Google Scholar] [CrossRef] [PubMed]
- Lilleness, B.M.; Frishman, W.H. Ghrelin and the Cardiovascular System. Cardiol. Rev. 2016, 24, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Conconi, M.T.; Nico, B.; Guidolin, D.; Baiguera, S.; Spinazzi, R.; Rebuffat, P.; Malendowicz, L.K.; Vacca, A.; Carraro, G.; Parnigotto, P.P.; et al. Ghrelin inhibits FGF-2-mediated angiogenesis in vitro and in vivo. Peptides 2004, 25, 2179–2185. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei Bavil, F.; Karimi-Sales, E.; Alihemmati, A.; Alipour, M.R. Effect of ghrelin on hypoxia-related cardiac angiogenesis: Involvement of miR-210 signalling pathway. Arch. Physiol. Biochem. 2022, 128, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Lopez, M.; Rahmouni, K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat. Rev. Endocrinol. 2017, 13, 338–351. [Google Scholar] [CrossRef]
- Dixit, V.D.; Schaffer, E.M.; Pyle, R.S.; Collins, G.D.; Sakthivel, S.K.; Palaniappan, R.; Lillard, J.W., Jr.; Taub, D.D. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Investig. 2004, 114, 57–66. [Google Scholar] [CrossRef]
- Perpetuo, L.; Voisin, P.M.; Amado, F.; Hirtz, C.; Vitorino, R. Ghrelin and adipokines: An overview of their physiological role, antimicrobial activity and impact on cardiovascular conditions. Vitam. Horm. 2021, 115, 477–509. [Google Scholar]
- Bedendi, I.; Alloatti, G.; Marcantoni, A.; Malan, D.; Catapano, F.; Ghe, C.; Deghenghi, R.; Ghigo, E.; Muccioli, G. Cardiac effects of ghrelin and its endogenous derivatives des-octanoyl ghrelin and des-Gln14-ghrelin. Eur. J. Pharmacol. 2003, 476, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Fernandez, I.D.; Meng, Y.; Zhao, W.; Groth, S.W. Gut hormones, adipokines, and pro- and anti-inflammatory cytokines/markers in loss of control eating: A scoping review. Appetite 2021, 166, 105442. [Google Scholar] [CrossRef]
- Rodriguez, A. Novel molecular aspects of ghrelin and leptin in the control of adipobiology and the cardiovascular system. Obes. Facts 2014, 7, 82–95. [Google Scholar] [CrossRef]
- Zhang, M.; Qu, X.; Yuan, F.; Yang, Y.; Xu, L.; Dai, J.; Wang, W.; Fei, J.; Hou, X.; Fang, W. Ghrelin receptor deficiency aggravates atherosclerotic plaque instability. Front. Biosci. 2015, 20, 604–613. [Google Scholar] [CrossRef]
- Shu, Z.W.; Yu, M.; Chen, X.J.; Tan, X.R. Ghrelin could be a candidate for the prevention of in-stent restenosis. Cardiovasc. Drugs Ther. 2013, 27, 309–314. [Google Scholar] [PubMed]
- Virdis, A.; Taddei, S. Endothelial Dysfunction in Resistance Arteries of Hypertensive Humans: Old and New Conspirators. J. Cardiovasc. Pharmacol. 2016, 67, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Schrottmaier, W.C.; Mussbacher, M.; Salzmann, M.; Assinger, A. Platelet-leukocyte interplay during vascular disease. Atherosclerosis 2020, 307, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tang, C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 9760. [Google Scholar] [CrossRef]
- Ed Rainger, G.; Chimen, M.; Harrison, M.J.; Yates, C.M.; Harrison, P.; Watson, S.P.; Lordkipanidze, M.; Nash, G.B. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets 2015, 26, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Elbatarny, H.S.; Netherton, S.J.; Ovens, J.D.; Ferguson, A.V.; Maurice, D.H. Adiponectin, ghrelin, and leptin differentially influence human platelet and human vascular endothelial cell functions: Implication in obesity-associated cardiovascular diseases. Eur. J. Pharmacol. 2007, 558, 7–13. [Google Scholar] [CrossRef]
- Arici, O.F.; Cetin, N. Protective role of ghrelin against carbon tetrachloride (CCl(4))-induced coagulation disturbances in rats. Regul. Pept. 2011, 166, 139–142. [Google Scholar] [CrossRef]
- Nishimura, S.; Manabe, I.; Nagasaki, M.; Seo, K.; Yamashita, H.; Hosoya, Y.; Ohsugi, M.; Tobe, K.; Kadowaki, T.; Nagai, R.; et al. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J. Clin. Investig. 2008, 118, 710–721. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.M.; Filgueira, F.P.; Tostes, R.C.; Carvalho, M.H.; Akamine, E.H.; Lobato, N.S. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction. Vasc. Pharmacol. 2016, 84, 28–37. [Google Scholar] [CrossRef]
- Azul, L.; Leandro, A.; Boroumand, P.; Klip, A.; Seica, R.; Sena, C.M. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radic. Biol. Med. 2020, 146, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Landecho, M.F.; Tuero, C.; Valenti, V.; Bilbao, I.; de la Higuera, M.; Fruhbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [Green Version]
- Rossi, F.; Castelli, A.; Bianco, M.J.; Bertone, C.; Brama, M.; Santiemma, V. Ghrelin inhibits contraction and proliferation of human aortic smooth muscle cells by cAMP/PKA pathway activation. Atherosclerosis 2009, 203, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Okumura, H.; Nagaya, N.; Enomoto, M.; Nakagawa, E.; Oya, H.; Kangawa, K. Vasodilatory effect of ghrelin, an endogenous peptide from the stomach. J. Cardiovasc. Pharmacol. 2002, 39, 779–783. [Google Scholar] [CrossRef]
- Mao, Y.; Tokudome, T.; Kishimoto, I. Ghrelin and Blood Pressure Regulation. Curr. Hypertens. Rep. 2016, 18, 15. [Google Scholar] [CrossRef]
- Kawczynska-Drozdz, A.; Olszanecki, R.; Jawien, J.; Brzozowski, T.; Pawlik, W.W.; Korbut, R.; Guzik, T.J. Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats. Am. J. Hypertens. 2006, 19, 764–767. [Google Scholar] [CrossRef] [Green Version]
- Carraro, G.; Albertin, G.; Aragona, F.; Forneris, M.; Casale, V.; Spinazzi, R.; Nussdorfer, G.G. Age-dependent decrease in the ghrelin gene expression in the human adrenal cortex: A real-time PCR study. Int. J. Mol. Med. 2006, 17, 319–321. [Google Scholar]
- Cappellari, G.G.; Semolic, A.; Cremasco, G.; Vinci, P.; Zanetti, M.; Barazzoni, R. Unacylated ghrelin plasma levels are lower and predict 5-year low muscle mass in elderly obese subjects. Nutrition 2021, 87, 111316. [Google Scholar]
- Lindqvist, A.; Shcherbina, L.; Prasad, R.B.; Miskelly, M.G.; Abels, M.; Martinez-Lopez, J.A.; Fred, R.G.; Nergard, B.J.; Hedenbro, J.; Groop, L.; et al. Ghrelin suppresses insulin secretion in human islets and type 2 diabetes patients have diminished islet ghrelin cell number and lower plasma ghrelin levels. Mol. Cell. Endocrinol. 2020, 511, 110835. [Google Scholar] [CrossRef]
Determining Factors | Action | References |
---|---|---|
Adipose tissue | Increases the production of adiponectin, decreases the production of leptin and resistin. Stimulates adipogenesis by reducing fat oxidation, increases food intake, and stimulates preadipocyte differentiation | Choi et al., 2003 [19] Yasuda et al., 2003 [21] Lelis et al., 2019 [20] |
Adipose tissue inflammatory cells | Inhibits leptin-induced cytokine expression. | Dixit et al., 2004 [37] Perpetuo et al., 2021 [38] |
Endothelium | Promotes endothelial cell proliferation, inhibits endothelial cell apoptosis and increases the expression of eNOS in arterial endothelial cells. | Tesauro et al., 2005 [9] Mengozzi et al., 2020 [8] |
Atherosclerosis | Inhibits overproduction of inflammatory cytokines (IL-1, IL-6, IL-8, and TNF-α), suppresses MCP-1 and the NF-κB pathway and decreases the expression of Cox-2 in endothelial cells. | Bedendi et al., 2003 [39] Shu et al., 2013 [43] Ai et al., 2017 [25] Yang et al., 2020 [26] Virdis et al., 2016 [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiu, S.N.; Popa, R.F.; Akad, F.; Cretu-Silivestru, I.S.; Mihai, B.M.; Visnevschi, A.; Vudu, L.; Tamba, B.; Oboroceanu, T.; Timofte, D.; et al. Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression. Appl. Sci. 2022, 12, 3307. https://doi.org/10.3390/app12073307
Peiu SN, Popa RF, Akad F, Cretu-Silivestru IS, Mihai BM, Visnevschi A, Vudu L, Tamba B, Oboroceanu T, Timofte D, et al. Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression. Applied Sciences. 2022; 12(7):3307. https://doi.org/10.3390/app12073307
Chicago/Turabian StylePeiu, Sorin Nicolae, Radu Florin Popa, Fawzi Akad, Iustina S. Cretu-Silivestru, Bogdan Mircea Mihai, Anatolie Visnevschi, Lorina Vudu, Bogdan Tamba, Teodor Oboroceanu, Daniel Timofte, and et al. 2022. "Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression" Applied Sciences 12, no. 7: 3307. https://doi.org/10.3390/app12073307
APA StylePeiu, S. N., Popa, R. F., Akad, F., Cretu-Silivestru, I. S., Mihai, B. M., Visnevschi, A., Vudu, L., Tamba, B., Oboroceanu, T., Timofte, D., & Mocanu, V. (2022). Perivascular Adipose Tissue Inflammation: The Anti-Inflammatory Role of Ghrelin in Atherosclerosis Progression. Applied Sciences, 12(7), 3307. https://doi.org/10.3390/app12073307