Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Particles Instrumentation
2.2. Vehicles and Fuel
2.3. Test Protocol
2.4. Calculations
3. Results and Discussion
3.1. Sampling Location and Instrumentation
3.1.1. Dilution Tunnel Versus Tailpipe
3.1.2. Vehicle #1 Regenerations
3.1.3. Vehicle #2 Regeneration
3.2. Emission Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chen, Y.; Sun, R.; Borken-Kleefeld, J. On-Road NO x and Smoke Emissions of Diesel Light Commercial Vehicles–Combining Remote Sensing Measurements from across Europe. Environ. Sci. Technol. 2020, 54, 11744–11752. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.J.; Maricq, M.M. Signature Size Distributions for Diesel and Gasoline Engine Exhaust Particulate Matter. J. Aerosol Sci. 2001, 32, 749–764. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Mamakos, A.; Andersson, J.; Dilara, P.; Martini, G.; Schindler, W.; Bergmann, A. Measurement of Automotive Nonvolatile Particle Number Emissions within the European Legislative Framework: A Review. Aerosol Sci. Technol. 2012, 46, 719–749. [Google Scholar] [CrossRef]
- Lähde, T.; Rönkkö, T.; Virtanen, A.; Solla, A.; Kytö, M.; Söderström, C.; Keskinen, J. Dependence between Nonvolatile Nucleation Mode Particle and Soot Number Concentrations in an EGR Equipped Heavy-Duty Diesel Engine Exhaust. Environ. Sci. Technol. 2010, 44, 3175–3180. [Google Scholar] [CrossRef] [PubMed]
- Filippo, A.D.; Maricq, M.M. Diesel Nucleation Mode Particles: Semivolatile or Solid? Environ. Sci. Technol. 2008, 42, 7957–7962. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Impact of Cold Temperature on Euro 6 Passenger Car Emissions. Environ. Pollut. 2018, 234, 318–329. [Google Scholar] [CrossRef]
- Lähde, T.; Giechaskiel, B.; Pavlovic, J.; Suarez-Bertoa, R.; Valverde, V.; Clairotte, M.; Martini, G. Solid Particle Number Emissions of 56 Light-Duty Euro 5 and Euro 6 Vehicles. J. Aerosol Sci. 2022, 159, 105873. [Google Scholar] [CrossRef]
- Giechaskiel, B. Particle Number Emissions of a Diesel Vehicle during and between Regeneration Events. Catalysts 2020, 10, 587. [Google Scholar] [CrossRef]
- Transport & Environment New Diesels, New Problems. European Federation for Transport and Environment AISBL. Brussels, Belgium. 2020. Available online: https://www.transportenvironment.org/wp-content/uploads/2021/07/2020_01_New_diesels_new_problems_full_report.pdf (accessed on 7 February 2022).
- Valverde, V.; Giechaskiel, B. Assessment of Gaseous and Particulate Emissions of a Euro 6d-Temp Diesel Vehicle Driven >1300 Km Including Six Diesel Particulate Filter Regenerations. Atmosphere 2020, 11, 645. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Lähde, T.; Suarez-Bertoa, R.; Clairotte, M.; Grigoratos, T.; Zardini, A.; Perujo, A.; Martini, G. Particle Number Measurements in the European Legislation and Future JRC Activities. Combust. Engines 2018, 174, 3–16. [Google Scholar] [CrossRef]
- Toumasatos, Z.; Raptopoulos-Chatzistefanou, A.; Kolokotronis, D.; Pistikopoulos, P.; Samaras, Z.; Ntziachristos, L. The Role of the Driving Dynamics beyond RDE Limits and DPF Regeneration Events on Pollutant Emissions of a Euro 6d-Temp Passenger Vehicle. J. Aerosol Sci. 2022, 161, 105947. [Google Scholar] [CrossRef]
- Samaras, Z.; Andersson, J.; Aakko-Saksa, P.; Cuelenaere, R.; Mellios, G. Additional Technical Issues for Euro 7 (LDV). Presented at the AGVES Meeting, Belgium, Brussels, 27 April 2021. [Google Scholar]
- Lahde, T.; Giechaskiel, B.; Martini, G. Development of Measurement Methodology for Sub 23 Nm Particle Number (PN) Measurements. SAE Int. J. Adv. Curr. Prac. Mobil. 2020, 3, 551–560. [Google Scholar] [CrossRef]
- Wang, T.; Quiros, D.C.; Thiruvengadam, A.; Pradhan, S.; Hu, S.; Huai, T.; Lee, E.S.; Zhu, Y. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles during on-Road Operation. Environ. Sci. Technol. 2017, 51, 6990–6998. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.D.; Ruehl, C.; Burnitzki, M.; Sobieralski, W.; Ianni, R.; Quiros, D.; Hu, S.; Chernich, D.; Collins, J.; Huai, T.; et al. Real-Time Particulate Emissions Rates from Active and Passive Heavy-Duty Diesel Particulate Filter Regeneration. Sci. Total Environ. 2019, 680, 132–139. [Google Scholar] [CrossRef]
- Mamakos, A.; Martini, G.; Manfredi, U. Assessment of the Legislated Particle Number Measurement Procedure for a Euro 5 and a Euro 6 Compliant Diesel Passenger Cars under Regulated and Unregulated Conditions. J. Aerosol Sci. 2013, 55, 31–47. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P.; Ntziachristos, L. Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere 2022, 13, 155. [Google Scholar] [CrossRef]
- Maricq, M.M. Chemical Characterization of Particulate Emissions from Diesel Engines: A Review. J. Aerosol Sci. 2007, 38, 1079–1118. [Google Scholar] [CrossRef]
- Duarte, R.M.B.O.; Duarte, A.C. On the Water-Soluble Organic Matter in Inhalable Air Particles: Why Should Outdoor Experience Motivate Indoor Studies? Appl. Sci. 2021, 11, 9917. [Google Scholar] [CrossRef]
- Samara, C. On the Redox Activity of Urban Aerosol Particles: Implications for Size Distribution and Relationships with Organic Aerosol Components. Atmosphere 2017, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Pye, H.O.T.; Ward-Caviness, C.K.; Murphy, B.N.; Appel, K.W.; Seltzer, K.M. Secondary Organic Aerosol Association with Cardiorespiratory Disease Mortality in the United States. Nat. Commun. 2021, 12, 7215. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Khalek, I.; Kittelson, D.; Brear, F. The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements; SAE Technical Paper 1999-01–1142; SAE International: Warrendale, PA, USA, 1999. [Google Scholar]
- Ntziachristos, L.; Giechaskiel, B.; Pistikopoulos, P.; Samaras, Z.; Mathis, U.; Mohr, M.; Ristimäki, J.; Keskinen, J.; Mikkanen, P.; Casati, R.; et al. Performance Evaluation of a Novel Sampling and Measurement System for Exhaust Particle Characterization; SAE Technical Paper 2004-01–1439; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Kittelson, D.; Khalek, I.; McDonald, J.; Stevens, J.; Giannelli, R. Particle Emissions from Mobile Sources: Discussion of Ultrafine Particle Emissions and Definition. J. Aerosol Sci. 2022, 159, 105881. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and Accuracy of a Particle Number Measurement System. Meas. Sci. Technol. 2010, 21, 045102. [Google Scholar] [CrossRef]
- Amanatidis, S.; Ntziachristos, L.; Giechaskiel, B.; Katsaounis, D.; Samaras, Z.; Bergmann, A. Evaluation of an Oxidation Catalyst (“Catalytic Stripper”) in Eliminating Volatile Material from Combustion Aerosol. J. Aerosol Sci. 2013, 57, 144–155. [Google Scholar] [CrossRef]
- Yamada, H.; Funato, K.; Sakurai, H. Application of the PMP Methodology to the Measurement of Sub-23 Nm Solid Particles: Calibration Procedures, Experimental Uncertainties, and Data Correction Methods. J. Aerosol Sci. 2015, 88, 58–71. [Google Scholar] [CrossRef]
- Samaras, Z.C.; Andersson, J.; Bergmann, A.; Hausberger, S.; Toumasatos, Z.; Keskinen, J.; Haisch, C.; Kontses, A.; Ntziachristos, L.D.; Landl, L.; et al. Measuring Automotive Exhaust Particles down to 10 Nm; SAE Technical Paper 2020-01–2209; SAE International: Warrendale, PA, USA, 2020. [Google Scholar]
- Mathis, U.; Ristimäki, J.; Mohr, M.; Keskinen, J.; Ntziachristos, L.; Samaras, Z.; Mikkanen, P. Sampling Conditions for the Measurement of Nucleation Mode Particles in the Exhaust of a Diesel Vehicle. Aerosol Sci. Technol. 2004, 38, 1149–1160. [Google Scholar] [CrossRef]
- Samaras, Z.; Rieker, M.; Papaioannou, E.; van Dorp, W.F.; Kousoulidou, M.; Ntziachristos, L.; Andersson, J.; Bergmann, A.; Hausberger, S.; Keskinen, J.; et al. Perspectives for Regulating 10 Nm Particle Number Emissions Based on Novel Measurement Methodologies. J. Aerosol Sci. 2022, 162, 105957. [Google Scholar] [CrossRef]
- Giechaskiel, B. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory. Int. J. Environ. Res. Public Health 2018, 15, 304. [Google Scholar] [CrossRef] [Green Version]
- Mamakos, A.; Schwelberger, M.; Fierz, M.; Giechaskiel, B. Effect of Selective Catalytic Reduction on Exhaust Nonvolatile Particle Emissions of Euro VI Heavy-Duty Compression Ignition Vehicles. Aerosol Sci. Technol. 2019, 53, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Lähde, T.; Melas, A.D.; Valverde, V.; Clairotte, M. Uncertainty of Laboratory and Portable Solid Particle Number Systems for Regulatory Measurements of Vehicle Emissions. Environ. Res. 2021, 197, 111068. [Google Scholar] [CrossRef] [PubMed]
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating Particle Number Measurements from the Tailpipe of Light-Duty Vehicles: The next Step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Fukano, I.; Hosogai, S.; Dardiotis, C.; Kandlhofer, C. Comparison of Solid Particle Number Emission of Gasoline Direct Injection Vehicles between CVS and Tailpipe Samplings. Int. J. Automot. Eng. 2021, 12, 142–149. [Google Scholar] [CrossRef]
- Zinola, S.; Raux, S.; Leblanc, M. Persistent Particle Number Emissions Sources at the Tailpipe of Combustion Engines; SAE Technical Paper 2016-01–2283; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Lao, C.T.; Akroyd, J.; Eaves, N.; Smith, A.; Morgan, N.; Bhave, A.; Kraft, M. Modelling Particle Mass and Particle Number Emissions during the Active Regeneration of Diesel Particulate Filters. Proc. Combust. Inst. 2019, 37, 4831–4838. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Munoz-Bueno, R.; Rubino, L.; Manfredi, U.; Dilara, P.; De Santi, G.; Andersson, J. Particle Measurement Programme (PMP): Particle Size and Number Emissions before, during and after Regeneration Events of a Euro 4 DPF Equipped Light-Duty Diesel Vehicle; SAE Technical Paper 2007-01–1944; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Giechaskiel, B.; Ntziachristos, L.; Samaras, Z.; Casati, R.; Scheer, V.; Vogt, R. Effect of Speed and Speed-Transition on the Formation of Nucleation Mode Particles from a Light Duty Diesel Vehicle; SAE Technical Paper 2007-01-1110; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Karjalainen, P.; Rönkkö, T.; Pirjola, L.; Heikkilä, J.; Happonen, M.; Arnold, F.; Rothe, D.; Bielaczyc, P.; Keskinen, J. Sulfur Driven Nucleation Mode Formation in Diesel Exhaust under Transient Driving Conditions. Environ. Sci. Technol. 2014, 48, 2336–2343. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, M.; Noel, L.; R’Mili, B.; Boréave, A.; D’Anna, B.; Raux, S. Impact of Engine Warm-up and DPF Active Regeneration on Regulated & Unregulated Emissions of a Euro 6 Diesel SCR Equipped Vehicle. J. Earth Sci. Geotechn. Eng. 2016, 6, 29–50. [Google Scholar]
- R’Mili, B.; Boréave, A.; Meme, A.; Vernoux, P.; Leblanc, M.; Noël, L.; Raux, S.; D’Anna, B. Physico-Chemical Characterization of Fine and Ultrafine Particles Emitted during Diesel Particulate Filter Active Regeneration of Euro 5 Diesel Vehicles. Environ. Sci. Technol. 2018, 52, 3312–3319. [Google Scholar] [CrossRef]
- Bergmann, M.; Kirchner, U.; Vogt, R.; Benter, T. On-Road and Laboratory Investigation of Low-Level PM Emissions of a Modern Diesel Particulate Filter Equipped Diesel Passenger Car. Atmos. Environ. 2009, 43, 1908–1916. [Google Scholar] [CrossRef]
- Ruehl, C.; Smith, J.D.; Ma, Y.; Shields, J.E.; Burnitzki, M.; Sobieralski, W.; Ianni, R.; Chernich, D.J.; Chang, M.-C.O.; Collins, J.F.; et al. Emissions during and Real-World Frequency of Heavy-Duty Diesel Particulate Filter Regeneration. Environ. Sci. Technol. 2018, 52, 5868–5874. [Google Scholar] [CrossRef]
- Vouitsis, E.; Ntziachristos, L.; Samaras, Z. Modelling of Diesel Exhaust Aerosol during Laboratory Sampling. Atmos. Environ. 2005, 39, 1335–1345. [Google Scholar] [CrossRef]
- Shibata, K.; Enya, K.; Ishikawa, N.; Sakamoto, K. EC/OC and PAHs Emissions from a Modern Diesel Engine with DPF Regeneration Fueled by 10% RME Biodiesel. Aerosol Air Qual. Res. 2019, 19, 1765–1774. [Google Scholar] [CrossRef]
- Giechaskiel, B. Differences between Tailpipe and Dilution Tunnel Sub-23 Nm Nonvolatile (Solid) Particle Number Measurements. Aerosol Sci. Technol. 2019, 53, 1012–1022. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B. Effect of Sampling Conditions on the Sub-23 Nm Nonvolatile Particle Emissions Measurements of a Moped. Appl. Sci. 2019, 9, 3112. [Google Scholar] [CrossRef] [Green Version]
- Cauda, E.; Hernandez, S.; Fino, D.; Saracco, G.; Specchia, V. PM0.1 Emissions during Diesel Trap Regeneration. Environ. Sci. Technol. 2006, 40, 5532–5537. [Google Scholar] [CrossRef] [PubMed]
- Beatrice, C.; Iorio, S.D.; Guido, C.; Napolitano, P. Detailed Characterization of Particulate Emissions of an Automotive Catalyzed DPF Using Actual Regeneration Strategies. Exp. Therm. Fluid Sci. 2012, 39, 45–53. [Google Scholar] [CrossRef]
- Meng, Z.; Chen, Z.; Tan, J.; Wang, W.; Zhang, Z.; Huang, J.; Fang, J. Regeneration Performance and Particulate Emission Characteristics during Active Regeneration Process of GPF with Ash Loading. Chem. Eng. Sci. 2022, 248, 117114. [Google Scholar] [CrossRef]
- Drossinos, Y.; Melas, A.D.; Kostoglou, M.; Isella, L. Morphology-Dependent Random Binary Fragmentation of in Silico Fractal-like Agglomerates. Europhys. Lett. 2019, 127, 46002. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Pham, L.; Johnson, K.C.; Durbin, T.D.; Karavalakis, G.; Kittelson, D.; Jung, H. Impacts of Exhaust Transfer System Contamination on Particulate Matter Measurements. Emiss. Control Sci. Technol. 2020, 6, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Swanson, J.J.; Kittelson, D.B.; Watts, W.F.; Gladis, D.D.; Twigg, M.V. Influence of Storage and Release on Particle Emissions from New and Used CRTs. Atmos. Environ. 2009, 43, 3998–4004. [Google Scholar] [CrossRef]
- Maricq, M.M.; Chase, R.E.; Xu, N. A Comparison of Tailpipe, Dilution Tunnel, and Wind Tunnel Data in Measuring Motor Vehicle PM. J. Air Waste Manag. Assoc. 2001, 51, 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, H.; Ayala, A.; Zhang, S.; Collins, J.; Huai, T.; Herner, J.; Chau, W. Emissions from a Diesel Car during Regeneration of an Active Diesel Particulate Filter. J. Aerosol Sci. 2010, 41, 541–552. [Google Scholar] [CrossRef]
- Zerboni, A.; Rossi, T.; Bengalli, R.; Catelani, T.; Rizzi, C.; Priola, M.; Casadei, S.; Mantecca, P. Diesel Exhaust Particulate Emissions and in Vitro Toxicity from Euro 3 and Euro 6 Vehicles. Environ. Pollut. 2022, 297, 118767. [Google Scholar] [CrossRef] [PubMed]
- Pajdowski, P.; Puchałka, B. The Process of Diesel Particulate Filter Regeneration under Real Driving Conditions. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012114. [Google Scholar] [CrossRef]
Vehicle | #1 | #2 |
---|---|---|
Emission standard | Euro 6d-Temp | Euro 6b |
Registration month/year | January 2020 | June 2017 |
Engine displacement (L) | 1.6 | 1.6 |
Maximum power (kW) | 85 | 88 |
Odometer (km) | 8500 | 21,000 |
After-treatment configuration | DOC, DPF, SCR | DOC, DPF, SCR |
Vehicle | #1 (Euro 6d-Temp) | #2 (Euro 6b) | ||
---|---|---|---|---|
Cycle | WLTC | Overall 1 | WLTC | Overall 2 |
SPN23,TP | 0.04 | 1.44 | 1.64 | 1.21 |
SPN10,TP | 0.06 | 1.96 | 2.06 | 1.57 |
TPN10,TP | 0.16 | 153 | 2.49 | 19.9 |
TPN4,TP | 0.22 | 304 | 3.37 | 27.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Melas, A.; Lähde, T. Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles. Appl. Sci. 2022, 12, 3321. https://doi.org/10.3390/app12073321
Giechaskiel B, Melas A, Lähde T. Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles. Applied Sciences. 2022; 12(7):3321. https://doi.org/10.3390/app12073321
Chicago/Turabian StyleGiechaskiel, Barouch, Anastasios Melas, and Tero Lähde. 2022. "Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles" Applied Sciences 12, no. 7: 3321. https://doi.org/10.3390/app12073321
APA StyleGiechaskiel, B., Melas, A., & Lähde, T. (2022). Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles. Applied Sciences, 12(7), 3321. https://doi.org/10.3390/app12073321