Comparison of the Wrist Range of Motion Measurement between Inertial Measurement Unit Glove, Smartphone Device and Standard Goniometer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Operators
2.2. Instrumentation
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandra, V.F. Joint Stiffness—Bone, Joint, and Muscle Disorders—MSD Manual Consumer Version; Merck Manuals: Kenilworth, NJ, USA, 2021. [Google Scholar]
- Copeland, S.A.; Gschwend, N.; Landi, A.; Saffar, P. Joint Stiffness of the Upper Limb; CRC Press: Boca Raton, FL, USA, 1997; pp. s198–s201. [Google Scholar]
- Bhatia, D.; Bejarano, T.; Novo, M. Current interventions in the management of knee osteoarthritis. J. Pharm. Bioallied Sci. 2013, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Deyle, G.D.; Allison, S.C.; Matekel, R.L.; Ryder, M.G.; Stang, J.M.; Gohdes, D.D.; Hutton, J.P.; Henderson, N.E.; Garber, M.B. Physical Therapy Treatment Effectiveness for Osteoarthritis of the Knee: A Randomized Comparison of Supervised Clinical Exercise and Manual Therapy Procedures Versus a Home Exercise Program. Phys. Ther. 2005, 85, 1301–1317. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.L.; Wilken, J.M.; Deyle, G.D.; Gill, N.W. Knee Extension and Stiffness in Osteoarthritic and Normal Knees: A Videofluoroscopic Analysis of the Effect of a Single Session of Manual Therapy. J. Orthop. Sport. Phys. Ther. 2014, 44, 273–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalam, V.; Lee, H. Development of a Two-Axis Robotic Platform for the Characterization of Two-Dimensional Ankle Mechanics. IEEE/ASME Trans. Mechatron. 2019, 24, 459–470. [Google Scholar] [CrossRef]
- Steultjens, M.P.M.; Dekker, J.; van Baar, M.E.; Oostendorp, R.A.B.; Bijlsma, J.W.J. Range of joint motion and disability in patients with osteoarthritis of the knee or hip. Rheumatology 2000, 39, 955–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magee, D.J. Orthopedic Physical Assessment, 4th ed.; Saunders: Philadelphia, PA, USA, 2006. [Google Scholar]
- Muir, S.W.; Corea, C.L.; Beaupre, L. Evaluating change in clinical status: Reliability and measures of agreement for the assessment of glenohumeral range of motion. N. Am. J. Sport. Phys. Ther. NAJSPT 2010, 5, 98–110. [Google Scholar]
- Adams, P.S.; Keyserling, W. Three methods for measuring range of motion while wearing protective clothing: A comparative study. Int. J. Ind. Ergon. 1993, 12, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Macionis, V. A Technique for Graphical Recording of Range of Motion Using an Improvised Paper Goniometer. J. Hand Ther. 2011, 24, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Macionis, V. Reliability of the standard goniometry and diagrammatic recording of finger joint angles: A comparative study with healthy subjects and non-professional raters. BMC Musculoskelet. Disord. 2013, 14, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.S.; Park, D.D.H.; Lee, Y.B.; Han, D.G.; Shim, J.S.; Lee, Y.J.; Kim, P.C.W. A study on the measurement of wrist motion range using the iPhone 4 gyroscope application. Ann. Plast. Surg. 2014, 73, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.R.; Kang, S.Y. Intra- and inter-examiner reliability of goniometer and inclinometer use in Craig’s test. J. Phys. Ther. Sci. 2015, 27, 1141–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahn, W. Musculoskeletal examination—Range of motion. J. Can. Chiropr. Assoc. 1979, 23, 51–60. [Google Scholar]
- Kolber, M.J.; Pizzini, M.; Robinson, A.; Yanez, D.; Hanney, W.J. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: An analysis of an iphone® application and gravity based inclinometry. Int. J. Sport. Phys. Ther. 2013, 8, 129–137. [Google Scholar]
- An, Q.; Ishikawa, Y.; Nakagawa, J.; Kuroda, A.; Oka, H.; Yamakawa, H.; Yamashita, A.; Asama, H. Evaluation of wearable gyroscope and accelerometer sensor (PocketIMU2) during walking and sit-to-stand motions. In Proceedings of the 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012; pp. 731–736. [Google Scholar] [CrossRef] [Green Version]
- Rovini, E.; Maremmani, C.; Cavallo, F. How Wearable Sensors Can Support Parkinson’s Disease Diagnosis and Treatment: A Systematic Review. Front. Neurosci. 2017, 11, 555. [Google Scholar] [CrossRef]
- Fahmi, F.; Utomo, N.; Nasution, I.K.; Sawaluddin, S. Stroke therapy using an interactive game with accelerometer and gyroscope sensor device. IOP Conf. Ser. Mater. Sci. Eng. 2020, 1003, 012157. [Google Scholar] [CrossRef]
- Modest, J.; Clair, B.; DeMasi, R.; Meulenaere, S.; Howley, A.; Aubin, M.; Jones, M. Self-measured wrist range of motion by wrist-injured and wrist-healthy study participants using a built-in iPhone feature as compared with a universal goniometer. J. Hand Ther. 2019, 32, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Pauchard, N.; Guilloteau, A. Reliability assessment of measuring active wrist pronation and supination range of motion with a smartphone. Hand Surg. Rehabil. 2017, 36, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liljequist, D.; Elfving, B.; Roaldsen, K.S. Intraclass correlation—A discussion and demonstration of basic features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Goniometer | Smartphone | IMU Glove | |
---|---|---|---|
Flexion (x) | 87.57 ± 2.42 | 87.42 ± 3.34 | 87.92 ± 2.54 |
Extension (x) | 85.02 ± 4.12 | 85.22 ± 4.00 | 86.00 ± 3.69 |
Supination (y) | 23.47 ± 2.18 | 23.70 ± 1.83 | 24.20 ± 2.08 |
Pronation (y) | 27.70 ± 1.72 | 27.25 ± 1.85 | 27.59 ± 1.48 |
Ulnar deviation (z) | 86.23 ± 2.30 | 86.28 ± 2.69 | 86.73 ± 2.40 |
Radial deviation (z) | 88.27 ± 2.40 | 86.97 ± 3.38 | 87.65 ± 2.87 |
ICC | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
Flexion (x) | ||||
Smartphone | 0.929 | 0.820 | 0.972 | <0.001 |
IMU Glove | 0.955 | 0.887 | 0.982 | <0.001 |
Extension (x) | ||||
Smartphone | 0.951 | 0.877 | 0.981 | <0.001 |
IMU Glove | 0.921 | 0.801 | 0.969 | <0.001 |
Supination (y) | ||||
Smartphone | 0.828 | 0.565 | 0.932 | <0.001 |
IMU Glove | 0.933 | 0.832 | 0.974 | <0.001 |
Pronation (y) | ||||
Smartphone | 0.948 | 0.868 | 0.979 | <0.001 |
IMU Glove | 0.961 | 0.900 | 0.984 | <0.001 |
Ulnar deviation (z) | ||||
Smartphone | 0.949 | 0.871 | 0.980 | <0.001 |
IMU Glove | 0.914 | 0.783 | 0.966 | <0.001 |
Radial deviation (z) | ||||
Smartphone | 0.937 | 0.841 | 0.975 | <0.001 |
IMU Glove | 0.955 | 0.885 | 0.982 | <0.001 |
ICC | 95% Confidence Interval | p-Value | ||
---|---|---|---|---|
Lower | Upper | |||
Flexion (x) | ||||
Goniometer | 0.963 | 0.923 | 0.984 | <0.001 |
Smartphone | 0.984 | 0.967 | 0.993 | <0.001 |
IMU Glove | 0.983 | 0.964 | 0.993 | <0.001 |
Extension (x) | ||||
Goniometer | 0.966 | 0.929 | 0.986 | <0.001 |
Smartphone | 0.989 | 0.976 | 0.995 | <0.001 |
IMU Glove | 0.977 | 0.952 | 0.990 | <0.001 |
Supination (y) | ||||
Goniometer | 0.951 | 0.897 | 0.979 | <0.001 |
Smartphone | 0.978 | 0.953 | 0.990 | <0.001 |
IMU Glove | 0.982 | 0.962 | 0.992 | <0.001 |
Pronation (y) | ||||
Goniometer | 0.957 | 0.909 | 0.982 | <0.001 |
Smartphone | 0.982 | 0.962 | 0.992 | <0.001 |
IMU Glove | 0.973 | 0.944 | 0.989 | <0.001 |
Ulnar deviation (z) | ||||
Goniometer | 0.918 | 0.827 | 0.965 | <0.001 |
Smartphone | 0.964 | 0.924 | 0.985 | <0.001 |
IMU Glove | 0.929 | 0.851 | 0.970 | <0.001 |
Radial deviation (z) | ||||
Goniometer | 0.941 | 0.876 | 0.975 | <0.001 |
Smartphone | 0.955 | 0.906 | 0.981 | <0.001 |
IMU Glove | 0.968 | 0.932 | 0.986 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surangsrirat, D.; Bualuangngam, T.; Sri-iesaranusorn, P.; Chaiyaroj, A.; Buekban, C.; Thanawattano, C.; Poopitaya, S. Comparison of the Wrist Range of Motion Measurement between Inertial Measurement Unit Glove, Smartphone Device and Standard Goniometer. Appl. Sci. 2022, 12, 3418. https://doi.org/10.3390/app12073418
Surangsrirat D, Bualuangngam T, Sri-iesaranusorn P, Chaiyaroj A, Buekban C, Thanawattano C, Poopitaya S. Comparison of the Wrist Range of Motion Measurement between Inertial Measurement Unit Glove, Smartphone Device and Standard Goniometer. Applied Sciences. 2022; 12(7):3418. https://doi.org/10.3390/app12073418
Chicago/Turabian StyleSurangsrirat, Decho, Tapiya Bualuangngam, Panyawut Sri-iesaranusorn, Attawit Chaiyaroj, Chatchai Buekban, Chusak Thanawattano, and Sompob Poopitaya. 2022. "Comparison of the Wrist Range of Motion Measurement between Inertial Measurement Unit Glove, Smartphone Device and Standard Goniometer" Applied Sciences 12, no. 7: 3418. https://doi.org/10.3390/app12073418
APA StyleSurangsrirat, D., Bualuangngam, T., Sri-iesaranusorn, P., Chaiyaroj, A., Buekban, C., Thanawattano, C., & Poopitaya, S. (2022). Comparison of the Wrist Range of Motion Measurement between Inertial Measurement Unit Glove, Smartphone Device and Standard Goniometer. Applied Sciences, 12(7), 3418. https://doi.org/10.3390/app12073418