Using Deep Learning to Predict the Amount of Chemicals Applied on the Wheel Track for Winter Road Maintenance
Abstract
:1. Introduction
2. Deep Neural Network/Deep Learning
3. Materials and Methods
3.1. Data Collection
3.2. Exploratory Data Analysis Using Statistical and Visualization Techniques
3.2.1. To Check Missing Values
3.2.2. To Describe Statical Characteristics of Historical Data
3.2.3. To Plot the Distribution of the Output (Amount of Chemical/Salt)
3.2.4. To Check Correlations between Input Variables and the Output Variable
3.2.5. To Explore Highly Correlated Feature with the Output through Scatter Plot
3.2.6. Distribution of Input Variables Based on the Amount of Chemical through a Box Plot
3.3. Feature Engineering
3.4. Data Preprocessing
3.5. Creating a DNN Model
4. Results
Model Evaluation and Prediction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaitkus, A.; Gražulytė, J.; Skrodenis, E.; Kravcovas, I. Design of frost resistant pavement structure based on road weather stations (RWSs) data. Sustainability 2016, 8, 1328. [Google Scholar] [CrossRef] [Green Version]
- Odelius, J.; Famurewa, S.M.; Forslöf, L.; Casselgren, J.; Konttaniemi, H. Industrial internet applications for efficient road winter maintenance. J. Qual. Maint. Eng. 2017, 23, 355–367. [Google Scholar] [CrossRef]
- Juga, I.; Nurmi, P.; Hippi, M. Statistical modelling of wintertime road surface friction. Meteorol. Appl. 2013, 20, 318–329. [Google Scholar] [CrossRef]
- Riehm, M. Measurements for Winter Road Maintenance. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 7 December 2012. [Google Scholar]
- Dan, H.C.; Tan, J.W.; Du, Y.F.; Cai, J.M. Simulation and optimization of road deicing salt usage based on Water-Ice-Salt Model. Cold. Reg. Sci. Technol. 2020, 169, 102917. [Google Scholar] [CrossRef]
- Xu, B.; Dan, H.C.; Li, L. Temperature prediction model of asphalt pavement in cold regions based on an improved BP neural network. Appl. Therm. Eng. 2017, 120, 568–580. [Google Scholar] [CrossRef]
- Terry, L.G.; Conaway, K.; Rebar, J.; Graettinger, A.J. Alternative deicers for winter road Maintenance—A Review. Water Air Soil Pollut. 2020, 231, 394. [Google Scholar] [CrossRef]
- Lorentzen, T. Climate change and winter road maintenance. Clim. Chang. 2020, 161, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Hallmark, B.; Dong, J. Examining the effects of winter road maintenance operations on traffic safety through visual analytics. In Proceedings of the IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Linton, M.A.; Fu, L. Connected vehicle solution for winter road surface condition monitoring. Transp. Res. Rec. 2016, 2551, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Pu, Z.; Liu, C.; Shi, X.; Cui, Z.; Wang, Y. Road surface friction prediction using long short-term memory neural network based on historical data. J. Intell. Transp. Syst. 2022, 6, 34–45. [Google Scholar] [CrossRef]
- Ahabchane, C.; Trépanier, M.; Langevin, A. Street-segment-based salt and abrasive prediction for winter maintenance using machine learning and GIS. Willey Trans. GIS 2018, 23, 48–69. [Google Scholar] [CrossRef] [Green Version]
- Kelting, D.L.; Laxon, C.L. Review of Effects and Costs of Road De-Icing with Recommendations for Winter Road Management in the Adirondack Park; Adirondack Watershed Institute: Paul Smiths, NY, USA, 2010; pp. 1–84. [Google Scholar]
- Zehetner, F.; Rosenfellner, U.; Mentler, A.; Gerzabek, M.H. Distribution of Road Salt Residues, Heavy Metals and Polycyclic Aromatic Hydrocarbons across a Highway-Forest Interface. Water Air Soil Poll. 2009, 198, 125–132. [Google Scholar] [CrossRef]
- Biggs, A.J.W.; Mahony, K.M. Is soil science relevant to road infrastructure? In Proceedings of the 13th International Soil Conservation Organisation Conference (ISCO), Conserving Soil and Water for Society: Sharing Solutions, Brisbane, Australia, 4–8 July 2004; pp. 1–7. [Google Scholar]
- Zhang, H.; Lepech, M.D.; Keoleian, G.A.; Qian, S.; Li, V.C. Dynamic life-cycle modeling of pavement overlay systems: Capturing the impacts of users, construction, and roadway deterioration. J. Infrastruct. Syst. 2010, 16, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Vignisdottir, H.R.; Ebrahimi, B.; Booto, G.K.; O’Born, R.; Brattebø, H.; Wallbaum, H.; Bohne, R.A. A review of environmental impacts of winter road maintenance. Cold Reg. Sci. Technol. 2019, 158, 143–153. [Google Scholar] [CrossRef]
- Pieper, K.J.; Tang, M.; Jones, C.N.; Weiss, S.; Greene, A.; Mohsin, H.; Parks, J.; Edwards, M.A. Impact of Road Salt on Drinking Water Quality and Infrastructure Corrosion in Private Wells. Environ. Sci. Technol. 2018, 52, 14078–14087. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhao, Y.; Khushi, M. A survey of Forex and stock price prediction using deep learning. Appl. Syst. Innov. 2021, 4, 9. [Google Scholar] [CrossRef]
- Zhu, W.; Xie, L.; Han, J.; Guo, X. The application of deep learning in cancer prognosis prediction. Cancers 2020, 12, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- McKinney, W. Data structures for statistical computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with numpy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Waskom, M.; Botvinnik, O.; O’Kane, D.; Hobson, P.; Lukauskas, S.; Gemperline, D.C.; Augspurger, T.; Halchenko, Y.; Cole, J.B.; Warmenhoven, J.; et al. mwaskom/seaborn: v0.8.1. Available online: https://doi.org/10.5281/zenodo.883859 (accessed on 3 September 2017). [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Keras. GitHub. 2015. Available online: https://github.com/fchollet/keras (accessed on 1 January 2020).
- Trafikverket. Available online: https://www.trafikverket.se/trafikinformation/vag/?TrafficType=personalTraffic&map=3%2F3611591.67%2F6763671.79%2F&Layers=RoadCondition%2BRoadWeather%2B (accessed on 12 December 2019).
Variables | Number of Missing Values |
---|---|
Surface temperature | 2 |
Air temperature | 0 |
Dew point temperature | 0 |
Level of grip | 2 |
Ice layer | 2 |
Precipitation | 0 |
Concentration | 2 |
Conductivity | 2 |
Snow height | 2 |
Freezing temperature | 2 |
Maximum wind speed | 16 |
Amount of chemical (output) | 2 |
Variables | Count | Mean | Std | Min | Max |
---|---|---|---|---|---|
Surface temperature | 3827 | 0.62 | 4.63 | −14.60 | 14.20 |
Air temperature | 3827 | 0.84 | 4.96 | −20.00 | 10.40 |
Dew point temperature | 3827 | −2.39 | 4.87 | −21.90 | 3.70 |
Level of grip | 3827 | 0.75 | 0.15 | 0.11 | 0.82 |
Ice layer | 3827 | 0.02 | 0.06 | 0.00 | 0.51 |
Precipitation | 3827 | 0.44 | 0.72 | 0.00 | 5.30 |
Concentration | 3827 | 25.49 | 77.48 | 0.00 | 352.70 |
Conductivity | 3827 | 1.95 | 1.76 | 0.00 | 8.60 |
Snow height | 3827 | 2.50 | 5.19 | 0.00 | 43.00 |
Freezing temperature | 3827 | −0.46 | 1.53 | −21.10 | 0.00 |
Maximum wind speed | 3827 | 5.78 | 2.64 | 0.50 | 15.40 |
Amount of chemical (output) | 3827 | 0.24 | 0.90 | 0.00 | 16.90 |
Variables | Correlation Value with the Output Variable (Amount of Chemical) |
---|---|
Freezing temperature | −0.98 |
Surface temperature | −0.18 |
Level of grip | −0.16 |
Air temperature | −0.14 |
Maximum wind speed | −0.07 |
Dew point temperature | −0.04 |
Concentration | 0.03 |
Ice layer | 0.13 |
Precipitation | 0.16 |
Snow height | 0.28 |
Conductivity | 0.47 |
Evaluation Metric | Value |
---|---|
MSE | 0.03 |
MAE | 0.05 |
R2 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatamzad, M.; Polanco Pinerez, G.C.; Casselgren, J. Using Deep Learning to Predict the Amount of Chemicals Applied on the Wheel Track for Winter Road Maintenance. Appl. Sci. 2022, 12, 3508. https://doi.org/10.3390/app12073508
Hatamzad M, Polanco Pinerez GC, Casselgren J. Using Deep Learning to Predict the Amount of Chemicals Applied on the Wheel Track for Winter Road Maintenance. Applied Sciences. 2022; 12(7):3508. https://doi.org/10.3390/app12073508
Chicago/Turabian StyleHatamzad, Mahshid, Geanette Cleotilde Polanco Pinerez, and Johan Casselgren. 2022. "Using Deep Learning to Predict the Amount of Chemicals Applied on the Wheel Track for Winter Road Maintenance" Applied Sciences 12, no. 7: 3508. https://doi.org/10.3390/app12073508
APA StyleHatamzad, M., Polanco Pinerez, G. C., & Casselgren, J. (2022). Using Deep Learning to Predict the Amount of Chemicals Applied on the Wheel Track for Winter Road Maintenance. Applied Sciences, 12(7), 3508. https://doi.org/10.3390/app12073508