Compound Boronizing and Its Kinetics Analysis for H13 Steel with Rare Earth CeO2 and Cr2O3
Abstract
:1. Introduction
2. Experiment
2.1. Material
2.2. Experiment
3. Results and Analysis
3.1. Thickness and Hardness of Boronizing Layer without Rare Earth
3.2. Thickness and Microhardness of Boronizing Layer with Rare Earth Addition
3.3. Boronization Kinetics Analysis
3.4. Microstructure of Rare Earth Boron-Chromium Co-Infiltration
3.5. Wear Resistance Test of Boronizing Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Z.G.; Lv, X.X.; An, J.; Yang, Y.L.; Sun, S.J. Role of RE element Nd on boronizing kinetics of steels. J. Mater. Eng. Perform. 2012, 21, 1337–1345. [Google Scholar] [CrossRef]
- Liu, J.J.; Chen, Z.P. Paste boronization and its research status. Electroplat. Finish. 2011, 33, 24–28. [Google Scholar]
- Genel, K. Boriding kinetics of H13 steel. Vacuum 2006, 80, 451–457. [Google Scholar]
- Pan, X.H.; Zhu, Z.C. Study on the chemical composition of h13 hot work die steel and its improvement and development. Mold Manuf. 2006, 6, 78–85. [Google Scholar]
- Wang, P.; Zhang, J.J.; Hu, Y.M. Application status of h13 steel. Mould. Manuf. 2007, 7, 1–7. [Google Scholar]
- Fu, Y.Z.; Wang, G.; Tong, W.P. Effect of boriding temperature on microstructure and properties of boronized layer of high vanadium wear-resistant steel. Rare Met. Cem. Carbides 2020, 48, 77–82. [Google Scholar]
- Su, Z.G.; Yang, Y.L.; Tian, X.; Lu, Y.; Sun, S.J.; An, J. Effect of rare earth elements on boronization kinetics. J. Jilin Univ. 2010, 40, 82–86. [Google Scholar]
- Ouyang, D.L.; Hu, S.W.; Tao, C.; Cui, X.; Zhu, Z.-S.; Lu, S.-Q. mExperiments and simulations of TiB_2/TiB boron permeation layer of Ti-6Al-2Zr-1Mo-1V alloy. T. Nonferr. Metal. Soc. 2021, 31, 3752–3761. [Google Scholar] [CrossRef]
- Cao, X.M.; Wen, M.; Han, W.X.; Wang, R.; Long, Y. Modification of rare earth elements on solid boronized layer. J. Chin. Rare Earth Soc. 1997, 15, 350–353. [Google Scholar]
- Wang, L.; Wu, Y.M.; Bian, G.Y.; Xie, X.Y. Effect of rare earth La2O3 on the properties of 45 steel boronizing layer. Surf. Technol. 2019, 48, 94–99. [Google Scholar]
- Qin, Z.W.; He, D.C.; Xu, J. Effect of rare earth on activation energy of boronizing diffusion of solid boronizing agent. Phys. Test 2006, 24, 10–11. [Google Scholar]
- Fabio, E.M.; Galtiere, C.R.; Luiz, C.C.; Amadeu, L.N.; George, E.T. Study on boriding kinetics of alloy ductile iron. Heat Treat. 2016, 31, 31–37. [Google Scholar]
- Peng, Z.Q.; Li, J.K.; Lu, J.B.; Ma, M.X.; Wu, Y.P. Effects of rare earth CeO2 on microstructure and properties of AlCoCuFeMnNi high-entropy alloys. J. Mat. Eng. 2018, 46, 91–97. [Google Scholar]
- Cai, W.J.; Lu, W.Z.; Wang, H.; Zhu, Y.S.; Zuo, D.W. Microstructure and property of surface layer produce during rare earths solid-state boriding of TC12 titanium alloy. Acta Aeronaut. Astronaut. Sin. 2015, 36, 1713–1721. [Google Scholar]
- Liu, Y.M. Study on Self-Protecting Boronizing Paste. Ph.D. Thesis, Nanjing University of Science and Technology, Nanjing, China, 2014. [Google Scholar]
- Ozbek, I. Mechanical properties and kinetics of borided AISI M50 bearing steel. Arab. J. Sci. Eng. 2014, 39, 5185–5192. [Google Scholar] [CrossRef]
- Yuan, X. Effect of Carbon Steel Surface Pretreatment on Boron Chromium Rare Earth Low Temperature CO Infiltration and Its mech Anism. Ph.D. Thesis, Shan Dong University, Jinan, China, 2016. [Google Scholar]
- Zhang, Y.W.; Zheng, Q.; Fan, Y.; Mei, S.Q.; Lygenov, B.; Guryev, A. Effects of CeO2 content, boronizing temperature and time on the microstructure and properties of boronizing layer of H13 steel. Mech. Eng. Mater. 2021, 45, 22–26. [Google Scholar]
Element | C | Si | Mn | Cr | Mo | V | P | S |
---|---|---|---|---|---|---|---|---|
Content (%) | 0.32–0.45 | 0.80–1.20 | 0.20–0.50 | 4.75–5.50 | 1.10–1.75 | 0.80–1.20 | ≤0.030 | ≤0.030 |
Paste material | B4C, KBF4, C, Bentonite, CeO2, Cr2O3, H2O, etc. |
Paste thickness | 3–5 mm |
Pre-treatment | Ventilated environment, 12–14 h |
Pre-heating | In the drying oven, 200 °C, 2–3 h |
Boriding temperature | 850 °C, 900 °C, 950 °C, 1000 °C, respectively |
Boriding time | 2 h, 3 h, 4 h, 5 h, respectively |
CeO2 content | 0%, 2%, 4%, 6%, respectively |
Cr2O3 content | 1%, 2%, 3%, 4%, respectively |
Time | 850 °C | 900 °C | 950 °C | 1000 °C | |
---|---|---|---|---|---|
Temperature | |||||
2 h | 16 μm | 23 μm | 27 μm | 28 μm | |
3 h | 19 μm | 27 μm | 32 μm | 31 μm | |
4 h | 20 μm | 36 μm | 42 μm | 42 μm | |
5 h | 21 μm | 35 μm | 40 μm | 41 μm |
Temperature | 850 °C | 900 °C | 950 °C | 1000 °C | |
---|---|---|---|---|---|
Time | |||||
2 h | 623.46 HV | 635.12 HV | 646.06 HV | 665.32 HV | |
3 h | 612.45 HV | 626.09 HV | 723.47 HV | 684.16 HV | |
4 h | 604.78 HV | 678.32 HV | 1246.90 HV | 1133.42 HV | |
5 h | 632.60 HV | 667.06 HV | 1136.05 HV | 1068.30 HV |
Temperature | CeO2 (2%) | CeO2 (4%) | CeO2 (6%) | |
---|---|---|---|---|
Content | ||||
1123 K (850 °C) | 22 μm | 31 μm | 33 μm | |
1173 K (900 °C) | 42 μm | 57 μm | 58 μm | |
1223 K (950 °C) | 54 μm | 71 μm | 74 μm | |
1273 K (1000 °C) | 59 μm | 75 μm | 79 μm |
Surface Depth | (CeO2) 2% Hardness/HV | (CeO2) 4% Hardness/HV | (CeO2) 6% Hardness/HV |
---|---|---|---|
20 μm | 1559.93 | 1571.97 | 1411.97 |
40 μm | 1412.10 | 1529.93 | 1509.04 |
60 μm | 714.29 | 1670.02 | 1173.15 |
70 μm | 662.47 | 1546.32 | 1125.45 |
100 μm | 686.60 | 652.42 | 624.31 |
Condition | Growth Factor (m2·s) | |||
---|---|---|---|---|
2% CeO2 | K1123 = 3.36 × 10−14 | K1173 = 1.23 × 10−13 | K1223 = 2.03 × 10−13 | K1273 = 2.42 × 10−13 |
4% CeO2 | K1123 = 6.67 × 10−14 | K1173 = 2.26 × 10−13 | K1223 = 3.5 × 10−13 | K1273 = 3.91 × 10−13 |
6% CeO2 | K1123 = 7.56 × 10−14 | K1173 = 2.34 × 10−13 | K1223 = 3.8 × 10−13 | K1273 = 4.33 × 10−13 |
CeO2 2% | CeO2 4% | CeO2 6% | |
---|---|---|---|
Diffusion activation energy (kJ/mol) | 160.70 | 143.94 | 143.16 |
Relatively reduced diffusion activation energy (kJ/mol) | Contrast value | 16.76 | 0.78 |
Wear Time/min | Mass Loss of Single Boronizing Sample/mg | Mass Loss of Boronizing Sample with Rare Earth Content of 4%/mg | Mass Loss of Boronizing Sample with Chromium Oxide Content of 2% and Rare Earth of 4%/mg |
---|---|---|---|
10 | 4.8 | 1.2 | 0.8 |
20 | 6.6 | 2.5 | 1.7 |
30 | 9.2 | 3.8 | 2.7 |
40 | 12.1 | 5.1 | 3.6 |
50 | 16.7 | 6.9 | 4.8 |
60 | 22.3 | 9.2 | 6.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, S.; Zhang, Y.; Zheng, Q.; Fan, Y.; Lygdenov, B.; Guryev, A. Compound Boronizing and Its Kinetics Analysis for H13 Steel with Rare Earth CeO2 and Cr2O3. Appl. Sci. 2022, 12, 3636. https://doi.org/10.3390/app12073636
Mei S, Zhang Y, Zheng Q, Fan Y, Lygdenov B, Guryev A. Compound Boronizing and Its Kinetics Analysis for H13 Steel with Rare Earth CeO2 and Cr2O3. Applied Sciences. 2022; 12(7):3636. https://doi.org/10.3390/app12073636
Chicago/Turabian StyleMei, Shunqi, Yanwei Zhang, Quan Zheng, Yu Fan, Burial Lygdenov, and Alexey Guryev. 2022. "Compound Boronizing and Its Kinetics Analysis for H13 Steel with Rare Earth CeO2 and Cr2O3" Applied Sciences 12, no. 7: 3636. https://doi.org/10.3390/app12073636
APA StyleMei, S., Zhang, Y., Zheng, Q., Fan, Y., Lygdenov, B., & Guryev, A. (2022). Compound Boronizing and Its Kinetics Analysis for H13 Steel with Rare Earth CeO2 and Cr2O3. Applied Sciences, 12(7), 3636. https://doi.org/10.3390/app12073636