Biosynthesis of (±)-Differolide, an Antioxidant Isolate from Streptomyces qaidamensis S10T
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation and Extract Preparation of Strain S. qaidamensis
2.2. Antioxidant Isolate from S. qaidamensis Extract
2.3. Structure Identification and DPPH Radical Scavenging Assay of Antioxidant
2.3.1. Structure Identification
2.3.2. 2,2-Diphenyl-1-picrylhydrazyl Free Radical Scavenging Assay
2.4. Biosynthesis of the Compound
3. Results
3.1. Structure Identification and Bioassay of Antioxidant
3.2. Biosynthesis of Differolide
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Challinor, V.L.; Bode, H.B. Bioactive natural products from novel microbial sources. Ann. N. Y. Acad. Sci. 2015, 1354, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Boruta, T. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J. Microbiol. Biotechnol. 2021, 37, 171. [Google Scholar] [CrossRef] [PubMed]
- Quinn, G.A.; Abdelhameed, A.M.; Banat, A.M.; Alharbi, N.K.; Baker, L.M.; Castro, H.C.; Dyson, P.J.; Facey, P.D.; Cobice, D.; Terra, L.; et al. Streptomyces Isolates from the Soil of an Ancient Irish Cure Site, Capable of Inhibiting Multi-Resistant Bacteria and Yeasts. Appl. Sci. 2021, 11, 4923. [Google Scholar] [CrossRef]
- Quinn, G.A.; Abdelhameed, A.M.; Alharbi, N.K.; Cobice, D.; Adu, S.A.; Swain, M.T.; Castro, H.C.; Facey, P.D.; Bakshi, H.A.; Tambuwala, M.M.; et al. The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts. Appl. Sci. 2020, 11, 173. [Google Scholar] [CrossRef]
- Sivakala, K.; Gutiérrez-García, K.; Jose, P.A.; Thinesh, T.; Anandham, R.; Barona-Gómez, F.; Sivakumar, N. Desert Environments Facilitate Unique Evolution of Biosynthetic Potential in Streptomyces. Molecules 2021, 26, 588. [Google Scholar] [CrossRef] [PubMed]
- Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads? Int. J. Microbiol. 2019, 2019, 5283948. [Google Scholar] [CrossRef] [Green Version]
- Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A.T.; Jones, A.L.; Brown, R.; Stach, J.E.M.; Goodfellow, M.; et al. Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J. Antibiot. 2009, 62, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.S.; Trusch, F.; Deng, H.; Raab, A.; Prokes, I.; Busarakam, K.; Asenjo, J.A.; Andrews, B.A.; van West, P.; Bull, A.T.; et al. Chaxapeptin, a Lasso Peptide from Extremotolerant Streptomyces leeuwenhoekii Strain C58 from the Hyperarid Atacama Desert. J. Org. Chem. 2015, 80, 10252–10260. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wei, X.; Qin, X.; Tian, X.; Liao, L.; Li, K.; Zhou, X.; Yang, X.; Wang, F.; Zhang, T.; et al. Antiviral Merosesquiterpenoids Produced by the Antarctic Fungus Aspergillus ochraceopetaliformis SCSIO 05702. J. Nat. Prod. 2016, 79, 59–65. [Google Scholar] [CrossRef]
- Okoro, C.; Brown, R.; Jones, A.; Andrews, B.A.; Asenjo, J.; Goodfellow, M.; Bull, A.T. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek 2008, 95, 121–133. [Google Scholar] [CrossRef]
- Zhang, B.; Tang, S.; Chen, X.; Zhang, G.; Zhang, W.; Chen, T.; Liu, G.; Li, S.W.; Dos Santos, L.T.; Castro, H.C.; et al. Streptomyces qaidamensis sp. nov., isolated from sand in the Qaidam Basin, China. J. Antibiot. 2018, 71, 880–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.T.-H.; Chan, K.-G.; Khan, T.; Bukhari, S.I.; Saokaew, A.P.D.S.; Duangjai, A.; Pusparajah, P.; Lee, L.-H.; Goh, B.H. Streptomyces sp. MUM212 as a Source of Antioxidants with Radical Scavenging and Metal Chelating Properties. Front. Pharmacol. 2017, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieser, T.; Bibb, M.J.; Chater, K.F.; Butter, M.; Hopwood, D.; Bittner, M.L.; Buttner, M.J. Practical Streptomyces Genetics: A Laboratory Manual; John Innes Centre Foundation: Norwich, UK, 2000. [Google Scholar]
- Liu, Z.; Guo, M.; Qian, J.; Zhuang, Y.; Zhang, S. Disruption of zwf2 gene to improve oxytetraclyline biosynthesis in Streptomyces rimosus M4018. Acta Microbiol. Sin. 2008, 48, 21–25. [Google Scholar]
- Keller-Schierlein, W.; Bahnmiiller, U.; Dobler, M. Isolation and sturcture elucidation of differolide. Helv. Chim. Act 1986, 69, 1833–1836. [Google Scholar]
- Depoorter, E.; De Canck, E.; Coenye, T.; Vandamme, P. Burkholderia Bacteria Produce Multiple Potentially Novel Molecules that Inhibit Carbapenem-Resistant Gram-Negative Bacterial Pathogens. Antibiotics 2021, 10, 147. [Google Scholar] [CrossRef]
- Mori, K. Synthetic examination of incorrectly proposed structures of biomolecules. Chem. Rec. 2005, 5, 1–16. [Google Scholar] [CrossRef]
- Keller-Schierlein, W.; Bahnmueller, U.; Dobler, M.; Bielecki, J.; Stuempfel, J.; Zaehner, H. ChemInform Abstract: Metabolites of Microorganisms. Part 238. Isolation and Structure Elucidation of Differolide. Cheminform 1987, 18, 16. [Google Scholar] [CrossRef]
- Liu, Z.; Tan, H.; Chen, K.; Chen, Y.; Zhang, W.; Chen, S.; Liu, H.; Zhang, W. Rhizophols A and B, antioxidant and axially chiral benzophenones from the endophytic fungus Cytospora rhizophorae. Org. Biomol. Chem. 2019, 17, 10009–10012. [Google Scholar] [CrossRef]
- Tan, C.; Liu, Z.; Chen, S.; Huang, X.; Cui, H.; Long, Y.; Lu, Y.; She, Z. Antioxidative Polyketones from the Mangrove-Derived Fungus Ascomycota sp. SK2YWS-L. Sci. Rep. 2016, 6, 36609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Guo, Z.; Lu, X.; Chen, H.; Liu, L.; Yu, Z.; Chen, Y. Hexaricins, Pradimicin-like Polyketides from a Marine Sediment-Derived Streptosporangium sp. and Their Antioxidant Effects. J. Nat. Prod. 2018, 81, 2069–2074. [Google Scholar] [CrossRef] [PubMed]
- Kohli, I.; Joshi, N.C.; Mohapatra, S.; Varma, A. Extremophile—An Adaptive Strategy for Extreme Conditions and Applications. Curr. Genom. 2020, 21, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jung, D.-H.; Seo, D.-H.; Chung, W.-H.; Seo, M.-J. Genome analysis of 1-deoxynojirimycin (1-DNJ)-producing Bacillus velezensis K26 and distribution of Bacillus sp. harboring a 1-DNJ biosynthetic gene cluster. Genomics 2021, 113, 647–653. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Zhao, Y.; Lei, X.; Jiang, Z.; Zhang, X.; Zheng, Z.; Si, S.; Wang, L.; Hong, B. Comparative genomics and transcriptomics analyses provide insights into the high yield and regulatory mechanism of Norvancomycin biosynthesis in Amycolatopsis orientalis NCPC 2-48. Microb. Cell Factories 2021, 20, 28. [Google Scholar] [CrossRef]
Primer | Sequence (5′-3′) |
---|---|
Left-for | gtaaaacgacggccagtgccaagcttcgtcatccacgcgtcgtcgaccggc |
Left-rev | ctggaacctcctggcggccgggcgc gccagggagcgcaagctcgacagcg |
Right-for | gcgcccggccgccaggaggttccag |
Right-rev | aacagctatgacatgattac gaattcaccggcgagtcccccgacgggtgctg |
S10 | TÜ3149 | Similar BGC | Type | Predicted Structure |
---|---|---|---|---|
C3 | C15/C23 | Melanin | Melanin | |
C5 | C13 | Ectoine | Ectoine | |
C8 | C22 | Desferrioxamine | Siderophore | |
C14 | C9 | Albaflavenone | Terprne | |
C15 | C28 | Spore pigment | T2-PKS | - |
C22 | C10 | Hopene | Terpene | |
C23 | C2 | Coelichelin | NRPS | |
C25 | C12 | informatipeptin | lanthipeptide | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Zhang, W.; Jiang, K.; Yu, X.; Wu, S.; Liu, G.; Chen, T. Biosynthesis of (±)-Differolide, an Antioxidant Isolate from Streptomyces qaidamensis S10T. Appl. Sci. 2022, 12, 3741. https://doi.org/10.3390/app12083741
Wu Y, Zhang W, Jiang K, Yu X, Wu S, Liu G, Chen T. Biosynthesis of (±)-Differolide, an Antioxidant Isolate from Streptomyces qaidamensis S10T. Applied Sciences. 2022; 12(8):3741. https://doi.org/10.3390/app12083741
Chicago/Turabian StyleWu, Yujie, Wei Zhang, Kan Jiang, Xue Yu, Shiyu Wu, Guangxiu Liu, and Tuo Chen. 2022. "Biosynthesis of (±)-Differolide, an Antioxidant Isolate from Streptomyces qaidamensis S10T" Applied Sciences 12, no. 8: 3741. https://doi.org/10.3390/app12083741
APA StyleWu, Y., Zhang, W., Jiang, K., Yu, X., Wu, S., Liu, G., & Chen, T. (2022). Biosynthesis of (±)-Differolide, an Antioxidant Isolate from Streptomyces qaidamensis S10T. Applied Sciences, 12(8), 3741. https://doi.org/10.3390/app12083741