Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
4.1. System Analysis
4.2. Control Algorithm
4.3. Potential Use Case for Treating Breast Cancer Using a Kv10.1 Controlled Nanorobot
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, A.; Jeyaraj, R.; De Lacey, S.F. Nanotechnology in Neurosurgical Oncology. In Nanotechnology in Cancer; Elsevier: Amsterdam, The Netherlands, 2017; pp. 139–170. ISBN 978-0-323-39080-4. [Google Scholar]
- Requicha, A.A.G. Nanorobots, NEMS, and Nanoassembly. Proc. IEEE 2003, 9, 1922–1933. [Google Scholar] [CrossRef]
- Simovic-Pavlovic, M.; Bokic, B.; Vasiljevic, D.; Kolaric, B. Bioinspired NEMS—Prospective of Collaboration with Nature. Appl. Sci. 2022, 12, 905. [Google Scholar] [CrossRef]
- Giri, G.; Maddahi, Y.; Zareinia, K. A Brief Review on Challenges in Design and Development of Nanorobots for Medical Applications. Appl. Sci. 2021, 11, 10385. [Google Scholar] [CrossRef]
- Asher, V.; Sowter, H.; Shaw, R.; Bali, A.; Khan, R. Eag and HERG Potassium Channels as Novel Therapeutic Targets in Cancer. World J. Surg. Oncol. 2010, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- García-Becerra, R.; Díaz, L.; Camacho, J.; Barrera, D.; Ordaz-Rosado, D.; Morales, A.; Ortiz, C.S.; Avila, E.; Bargallo, E.; Arrecillas, M.; et al. Calcitriol Inhibits Ether-à Go-Go Potassium Channel Expression and Cell Proliferation in Human Breast Cancer Cells. Exp. Cell Res. 2010, 316, 433–442. [Google Scholar] [CrossRef]
- Wang, G.J.; Chen, C.L.; Hsu, S.H.; Chiang, Y.L. Bio-MEMS Fabricated Artificial Capillaries for Tissue Engineering. Microsyst. Technol. 2005, 12, 120–127. [Google Scholar] [CrossRef]
- Tsuda, S.; Zauner, K.-P.; Gunji, Y.-P. Robot Control with Biological Cells. Biosystems 2007, 87, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Mendonça Munhoz, A.; Santanelli di Pompeo, F.; De Mezerville, R. Nanotechnology, Nanosurfaces and Silicone Gel Breast Implants: Current Aspects. Case Rep. Plast. Surg. Hand Surg. 2017, 4, 99–113. [Google Scholar] [CrossRef]
- Ion Channel|Learn Science at Scitable. Available online: https://www.nature.com/scitable/topicpage/ion-channel-14047658/ (accessed on 7 April 2022).
- Marchesi, A.; Gao, X.; Adaixo, R.; Rheinberger, J.; Stahlberg, H.; Nimigean, C.; Scheuring, S. An Iris Diaphragm Mechanism to Gate a Cyclic Nucleotide-Gated Ion Channel. Nat. Commun. 2018, 9, 3978. [Google Scholar] [CrossRef] [Green Version]
- Shad, K.F.; Salman, S.; Afridi, S.; Tariq, M.; Asghar, S. Introductory Chapter: Ion Channels. In Ion Channels in Health and Sickness; Shad, K.F., Ed.; InTech: London, UK, 2018; ISBN 978-1-78984-227-2. [Google Scholar]
- Gabashvili, I.S.; Sokolowski, B.H.A.; Morton, C.C.; Giersch, A.B.S. Ion Channel Gene Expression in the Inner Ear. J. Assoc. Res. Otolaryngol. 2007, 8, 305–328. [Google Scholar] [CrossRef] [Green Version]
- Sands, Z.; Grottesi, A.; Sansom, M.S.P. Voltage-Gated Ion Channels. Curr. Biol. 2005, 15, R44–R47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPFL Blue Brain Project, Channelpedia. Available online: https://channelpedia.epfl.ch/ (accessed on 7 April 2022).
- Coetzee, W.A.; Amarillo, Y.; Chiu, J.; Chow, A.; Lau, D.; McCormack, T.; Morena, H.; Nadal, M.S.; Ozaita, A.; Pountney, D.; et al. Molecular Diversity of K+ Channels. Ann. N. Y. Acad. Sci. 1999, 868, 233–255. [Google Scholar] [CrossRef] [PubMed]
- Jan, L.Y.; Jan, Y.N. Voltage-Gated and Inwardly Rectifying Potassium Channels. J. Physiol. 1997, 505, 267–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Novillo, C.; Capera, J.; Colomer-Molera, M.; Condom, E.; Ferreres, J.; Felipe, A. Implication of Voltage-Gated Potassium Channels in Neoplastic Cell Proliferation. Cancers 2019, 11, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lastraioli, E.; Iorio, J.; Arcangeli, A. Ion Channel Expression as Promising Cancer Biomarker. Biochim. Biophys. Acta BBA-Biomembr. 2015, 1848, 2685–2702. [Google Scholar] [CrossRef] [Green Version]
- Asher, V.; Khan, R.; Warren, A.; Shaw, R.; Schalkwyk, G.V.; Bali, A.; Sowter, H.M. The Eag Potassium Channel as a New Prognostic Marker in Ovarian Cancer. Diagn. Pathol. 2010, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Langthaler, S.; Lozanović Šajić, J.; Rienmüller, T.; Weinberg, S.H.; Baumgartner, C. Ion Channel Modeling beyond State of the Art: A Comparison with a System Theory-Based Model of the Shaker-Related Voltage-Gated Potassium Channel Kv1.1. Cells 2022, 11, 239. [Google Scholar] [CrossRef]
- Ogata, K. Modern Control Engineering, 5th ed.; Prentice-Hall Electrical Engineering Series. Instrumentation and Controls Series; Prentice-Hall: Boston, MA, USA, 2010; ISBN 978-0-13-615673-4. [Google Scholar]
- Schoukens, J.; Pintelon, R.; Rolain, Y. Mastering System Identification in 100 Exercises; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0-470-93698-6. [Google Scholar]
- Dorf, R.C.; Bishop, R.H. Modern Control Systems, 13th ed.; Pearson: Hoboken, NJ, USA, 2016; ISBN 978-0-13-440762-3. [Google Scholar]
- Nise, N.S. Control Systems Engineering, 7th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-118-17051-9. [Google Scholar]
- Ljung, L. System Identification: Theory for the User, 2nd ed.; Prentice Hall Information and System Sciences Series; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999; ISBN 978-0-13-656695-3. [Google Scholar]
- Ljung, L. System Identification ToolboxTM User’s Guide; The MathWorks, Inc.: Natick, MA, USA, 2014. [Google Scholar]
- Option Set for Tfest-MATLAB-MathWorks Switzerland. Available online: https://ch.mathworks.com/help/ident/ref/tfestoptions.html (accessed on 7 April 2022).
- Delgado-Ramírez, M.; De Jesús-Pérez, J.J.; Aréchiga-Figueroa, I.A.; Arreola, J.; Adney, S.K.; Villalba-Galea, C.A.; Logothetis, D.E.; Rodríguez-Menchaca, A.A. Regulation of Kv2.1 Channel Inactivation by Phosphatidylinositol 4,5-Bisphosphate. Sci. Rep. 2018, 8, 1769. [Google Scholar] [CrossRef] [Green Version]
- Martínez, R.; Stühmer, W.; Martin, S.; Schell, J.; Reichmann, A.; Rohde, V.; Pardo, L. Analysis of the Expression of Kv10.1 Potassium Channel in Patients with Brain Metastases and Glioblastoma Multiforme: Impact on Survival. BMC Cancer 2015, 15, 839. [Google Scholar] [CrossRef] [Green Version]
- Lazic, D. Nelinearni Sistemi (Nonlinear Systems); Faculty of Mechanical Engineering, University of Belgrade: Belgrade, Serbia, 2005; ISBN 978-86-7083-530-6. [Google Scholar]
- Wang, W.; Wu, Z.; He, Q. Swimming Nanorobots for Opening a Cell Membrane Mechanically. View 2020, 1, 20200005. [Google Scholar] [CrossRef]
- Ouadid-Ahidouch, H.; Ahidouch, A.; Pardo, L.A. Kv10.1 K+ Channel: From Physiology to Cancer. Pflüg. Arch.-Eur. J. Physiol. 2016, 468, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xi, N.; Lai, K.W.C.; Patterson, K.C.; Chen, H.; Song, B.; Qu, C.; Zhong, B.; Wang, D.H. Cellular Biophysical Dynamics and Ion Channel Activities Detected by AFM-Based Nanorobotic Manipulator in Insulinoma β-Cells. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 636–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, L.A. Oncogenic Potential of EAG K+ Channels. EMBO J. 1999, 18, 5540–5547. [Google Scholar] [CrossRef] [PubMed]
- Cázares-Ordoñez, V.; Pardo, L.A. Kv10.1 Potassium Channel: From the Brain to the Tumors. Biochem. Cell Biol. 2017, 95, 531–536. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Q.; Ding, B.; Nie, G. Anticancer Activities of Tumor-Killing Nanorobots. Trends Biotechnol. 2019, 37, 573–577. [Google Scholar] [CrossRef]
- Hariharan, R.; Manohar, J. Nanorobotics as Medicament: (Perfect Solution for Cancer). In Proceedings of the INTERACT-2010, Chennai, India, 3–5 December 2010; IEEE: Chennai, India, 2010; pp. 4–7. [Google Scholar]
- Manjunath, A.; Kishore, V. The Promising Future in Medicine: Nanorobots. Biomed. Sci. Eng. 2014, 2, 42–47. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozanović Šajić, J.; Langthaler, S.; Baumgartner, C. Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems. Appl. Sci. 2022, 12, 3836. https://doi.org/10.3390/app12083836
Lozanović Šajić J, Langthaler S, Baumgartner C. Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems. Applied Sciences. 2022; 12(8):3836. https://doi.org/10.3390/app12083836
Chicago/Turabian StyleLozanović Šajić, Jasmina, Sonja Langthaler, and Christian Baumgartner. 2022. "Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems" Applied Sciences 12, no. 8: 3836. https://doi.org/10.3390/app12083836
APA StyleLozanović Šajić, J., Langthaler, S., & Baumgartner, C. (2022). Creating a Novel Mathematical Model of the Kv10.1 Ion Channel and Controlling Channel Activity with Nanoelectromechanical Systems. Applied Sciences, 12(8), 3836. https://doi.org/10.3390/app12083836