Air Annealing Process for Threshold Voltage Tuning of MoTe2 FET
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of MoTe2 FETs
2.2. Air Annealing Process
2.3. Oxygen Treatments
2.4. Characterisation of Thin Film and Device Performance
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Chu, T.; Ilatikhameneh, H.; Klimeck, G.; Rahman, R.; Chen, Z. Electrically Tunable Bandgaps in Bilayer MoS2. Nano Lett. 2015, 15, 8000–8007. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Park, Y.D. Tuning Electrical Properties of 2D Materials by Self-Assembled Monolayers. Adv. Mater. Interfaces 2018, 5, 170036. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, Z.; Guo, J. Tuning the hysteresis voltage in 2D multilayer MoS2 FETs. Phys. B Condens. Matter 2016, 498, 76–81. [Google Scholar] [CrossRef]
- Rani, A.; Dicamillo, K.; Khan, A.H.; Paranjape, M.; Zaghloul, M.E. Tuning the polarity of MoTe2 fets by varying the channel thickness for gas-sensing applications. Sensors 2019, 19, 2551. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Yuan, D.; Yang, Z.; Tang, Z.; Zhang, X.; Yang, K.; Su, Y. Graphene van der Waals heterostructures for high-performance photodetectors. J. Mater. Chem. C 2019, 7, 11056–11067. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Xiao, X.; Zhang, K.; Guo, N.; Jia, Y.; Zhou, S.; Wu, Y.; Li, Q.; Xiao, L. Conversion of Multi-layered MoTe2 Transistor Between P-Type and N-Type and Their Use in Inverter. Nanoscale Res. Lett. 2018, 13, 291. [Google Scholar] [CrossRef]
- Sun, L.; Ding, M.; Li, J.; Yang, L.; Lou, X.; Xie, Z.; Zhang, W.; Chang, H. An Investigation in Phase Transition of MoTe2 Film with Continuous Tellurization Reaction. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kazimierz Dolny, Poland, 21–23 November 2019; Volume 677. [Google Scholar]
- Si, C.; Choe, D.; Xie, W.; Wang, H.; Sun, Z.; Bang, J.; Zhang, S. Photoinduced Vacancy Ordering and Phase Transition in MoTe2. Nano Lett. 2019, 19, 3612–3617. [Google Scholar] [CrossRef]
- Cheong, H.; Cheon, Y.; Lim, S.Y.; Kim, K. Structural phase transition and interlayer coupling in few-layer 1t′ and td mote2. ACS Nano 2021, 15, 2962–2970. [Google Scholar] [CrossRef]
- Chi, Z.; Chen, H.; Zhao, Q.; Weng, Y.X. Ultrafast carrier and phonon dynamics in few-layer 2H-MoTe2. J. Chem. Phys. 2019, 151, 114704. [Google Scholar] [CrossRef]
- Tan, Y.; Luo, F.; Zhu, M.; Xu, X.; Ye, Y.; Li, B.; Wang, G.; Luo, W.; Zheng, X.; Wu, N.; et al. Controllable 2H-to-1T′ phase transition in few-layer MoTe2. Nanoscale 2018, 10, 19964–19971. [Google Scholar] [CrossRef]
- Aguirre, C.M.; Levesque, P.L.; Paillet, M.; Lapointe, F.; St-Antoine, B.C.; Desjardins, P.; Martel, R. The role of the oxygen/water redox couple in suppressing electron conduction in field-effect transistors. Adv. Mater. 2009, 21, 3087–3091. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, J.; Zhang, Y.; Hu, L.; Liu, R.; Cong, C.; Qiu, Z.J. Precise layer control of MoTe2 by Ozone treatment. Nanomaterials 2019, 9, 756. [Google Scholar] [CrossRef] [PubMed]
- Qu, D.; Liu, X.; Huang, M.; Lee, C.; Ahmed, F.; Kim, H.; Ruoff, R.S.; Hone, J.; Yoo, W.J. Carrier-Type Modulation and Mobility Improvement of Thin MoTe2. Adv. Mater. 2017, 29, 1606433. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.W.; Elahi, E.; Amin, A.; Aftab, S.; Aslam, I.; Hussain, G.; Shehzad, M.A. A facile route to enhance the mobility of MoTe2 field effect transistor via chemical doping. Superlattices Microstruct. 2020, 147, 106698. [Google Scholar] [CrossRef]
- Lim, J.Y.; Pezeshki, A.; Oh, S.; Kim, J.S.; Lee, Y.T.; Yu, S.; Hwang, D.K.; Lee, G.H.; Choi, H.J.; Im, S. Homogeneous 2D MoTe2 p–n Junctions and CMOS Inverters formed by Atomic-Layer-Deposition-Induced Doping. Adv. Mater. 2017, 29, 1701798. [Google Scholar] [CrossRef]
- Luo, W.; Zhu, M.; Peng, G.; Zheng, X.; Miao, F.; Bai, S.; Zhang, X.A.; Qin, S. Carrier Modulation of Ambipolar Few-Layer MoTe2 Transistors by MgO Surface Charge Transfer Doping. Adv. Funct. Mater. 2018, 28, 1704539. [Google Scholar] [CrossRef]
- Liang, Q.; Gou, J.; Arramel; Zhang, Q.; Zhang, W.; Wee, A.T.S. Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides. Nano Res. 2020, 13, 3439–3444. [Google Scholar] [CrossRef]
- Liu, X.; Qu, D.; Yuan, Y.; Sun, J.; Yoo, W.J. Self-Terminated Surface Monolayer Oxidation Induced Robust Degenerate Doping in MoTe2for Low Contact Resistance. ACS Appl. Mater. Interfaces 2020, 12, 26586–26592. [Google Scholar] [CrossRef]
- Park, J.Y.; Bae, H.; Moon, D.I.; Jeon, C.H.; Choi, Y.K. Threshold voltage tuning technique in Gate-All-Around MOSFETs by utilizing gate electrode with potential distribution. IEEE Electron Device Lett. 2016, 37, 1391–1394. [Google Scholar] [CrossRef]
- Van, N.H.; Lee, J.H.; Sohn, J.I.; Cha, S.; Whang, D.; Kim, J.M.; Kang, D.J. Tunable threshold voltage of an n-type Si nanowire ferroelectric-gate field effect transistor for high-performance nonvolatile memory applications. Nanotechnology 2014, 25, 205201. [Google Scholar] [CrossRef]
- Kirsch, P.D.; Sivasubramani, P.; Huang, J.; Young, C.D.; Quevedo-Lopez, M.A.; Wen, H.C.; Alshareef, H.; Choi, K.; Park, C.S.; Freeman, K.; et al. Dipole model explaining high-k /metal gate field effect transistor threshold voltage tuning. Appl. Phys. Lett. 2008, 92, 092901. [Google Scholar] [CrossRef]
- Li, M.; Lin, C.Y.; Chang, Y.M.; Yang, S.H.; Lee, M.P.; Chen, C.F.; Lee, K.C.; Yang, F.S.; Chou, Y.; Lin, Y.C.; et al. Facile and Reversible Carrier-Type Manipulation of Layered MoTe2Toward Long-Term Stable Electronics. ACS Appl. Mater. Interfaces 2020, 12, 42918–42924. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.S.; Lee, M.; Ngo, T.D.; Hone, J.; Yoo, W.J. Chemical Dopant-Free Doping by Annealing and Electron Beam Irradiation on 2D Materials. Adv. Electron. Mater. 2021, 7, 2100449. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Amin, A.; Kamran, M.A.; Ateeq, H.; Elahi, E.; Hussain, G.; Azam, S.; Aftab, S.; Alharbi, T.; Majid, A. Tailoring the electrical properties of MoTe2 field effect transistor via chemical doping. Superlattices Microstruct. 2019, 135, 106247. [Google Scholar] [CrossRef]
- Vasdev, A.; Kamboj, S.; Sirohi, A.; Mandal, M.; Marik, S.; Singh, R.P.; Sheet, G. Field induced hysteretic structural phase switching and possible CDW in Re-doped MoTe2. J. Phys. Condens. Matter 2021, 33, 255401. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Qi, D.; Han, C.; Liu, J.; Zhu, J.; Xiang, Y.; Zhang, W. Facile p-Doping of Few-Layer MoTe2 by Controllable Surface Oxidation toward High-Performance Complementary Devices. ACS Appl. Electron. Mater. 2020, 2, 920–926. [Google Scholar] [CrossRef]
- Torricelli, F.; Ghittorelli, M.; Smits, E.C.P.; Roelofs, C.W.S.; Janssen, R.A.J.; Gelinck, G.H.; Kovács-Vajna, Z.M.; Cantatore, E. Ambipolar Organic Tri-Gate Transistor for Low-Power Complementary Electronics. Adv. Mater. 2016, 28, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Sahin, H.; Suslu, A.; Ding, L.; Bertoni, M.I.; Peeters, F.M.; Tongay, S. Environmental changes in MoTe2 excitonic dynamics by defects-activated molecular interaction. ACS Nano 2015, 9, 5326–5332. [Google Scholar] [CrossRef]
- Wang, S.P.; Zhang, R.J.; Zhang, L.; Feng, L.F.; Liu, J. Accurate change of carrier types within ultrathin MoTe2 field-effect transistors with the time exposed to ambient air. J. Mater. Sci. 2019, 54, 3222–3229. [Google Scholar] [CrossRef]
- Chae, S.H.; Jin, Y.; Kim, T.S.; Chung, D.S.; Na, H.; Nam, H.; Kim, H.; Perello, D.J.; Jeong, H.Y.; Ly, T.H.; et al. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano 2016, 10, 1309–1316. [Google Scholar] [CrossRef]
- Gao, J.; Li, B.; Tan, J.; Chow, P.; Lu, T.M.; Koratkar, N. Aging of Transition Metal Dichalcogenide Monolayers. ACS Nano 2016, 10, 2628–2635. [Google Scholar] [CrossRef]
- Park, J.H.; Vishwanath, S.; Wolf, S.; Zhang, K.; Kwak, I.; Edmonds, M.; Breeden, M.; Liu, X.; Dobrowolska, M.; Furdyna, J.; et al. Selective Chemical Response of Transition Metal Dichalcogenides and Metal Dichalcogenides in Ambient Conditions. ACS Appl. Mater. Interfaces 2017, 9, 29255–29264. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczyk, M.; Gołasa, K.; Zinkiewicz, M.; Nogajewski, K.; Molas, M.R.; Potemski, M.; Wysmołek, A.; Babiñski, A. Raman scattering of few-layers MoTe2. 2D Mater. 2016, 3, 025010. [Google Scholar] [CrossRef]
- Stan, G.; Ciobanu, C.V.; Likith, S.R.J.; Rani, A.; Zhang, S.; Hacker, C.A.; Krylyuk, S.; Davydov, A.V. Doping of MoTe2 via Surface Charge Transfer in Air. ACS Appl. Mater. Interfaces 2020, 12, 18182–18193. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, C.; Hwang, Y.H.; Lee, S.; Choi, M.; Ju, B.K. Carrier-type modulation of tungsten diselenide (WSe2) field-effect transistors (FETs) via benzyl viologen (BV) doping. Chem. Phys. Lett. 2021, 770, 138453. [Google Scholar] [CrossRef]
- Rani, A.; DiCamillo, K.; Krylyuk, S.; Davydov, A.V.; Debnath, R.; Taheri, P.; Korman, C.E.; Paranjape, M.; Zaghloul, M.E. Control of Polarity in Multilayer MoTe2 Field-Effect Transistors by Channel Thickness. In Low-Dimensional Materials and Devices 2018; International Society for Optics and Photonics: San Diego, CA, USA, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Roh, Y.; Choi, Y.; Jun, A.H.; Seo, H.; Ju, B.-K. Air Annealing Process for Threshold Voltage Tuning of MoTe2 FET. Appl. Sci. 2022, 12, 3840. https://doi.org/10.3390/app12083840
Kim S, Roh Y, Choi Y, Jun AH, Seo H, Ju B-K. Air Annealing Process for Threshold Voltage Tuning of MoTe2 FET. Applied Sciences. 2022; 12(8):3840. https://doi.org/10.3390/app12083840
Chicago/Turabian StyleKim, Soojin, Yeeun Roh, Younguk Choi, Ah Hyun Jun, Hojun Seo, and Byeong-Kwon Ju. 2022. "Air Annealing Process for Threshold Voltage Tuning of MoTe2 FET" Applied Sciences 12, no. 8: 3840. https://doi.org/10.3390/app12083840
APA StyleKim, S., Roh, Y., Choi, Y., Jun, A. H., Seo, H., & Ju, B. -K. (2022). Air Annealing Process for Threshold Voltage Tuning of MoTe2 FET. Applied Sciences, 12(8), 3840. https://doi.org/10.3390/app12083840