Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Atomic Emission Spectrometry with Direct Current Arc Discharge
2.3. Instrumentation
2.4. Calibration
2.5. Quality Assurance and Quality Control
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429192036. [Google Scholar]
- Maurice, P.A. Environmental Surfaces and Interfaces from the Nanoscale to the Global Scale; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Reimann, C.; Koller, F.; Frengstad, B.; Kashulina, G.; Niskavaara, H.; Englmaier, P. Comparison of the Element Composition in Several Plant Species and Their Substrate from a 1,500,000-Km2 Area in Northern Europe. Sci. Total Environ. 2001, 278, 87–112. [Google Scholar] [CrossRef]
- Lagada, R.A.; Alamelua, D.; Guravb, T.; Pandeb, K.; Aggarwal, S.K. Elemental Profiling of Indian Tea by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). At. Spectrosc. 2011, 32, 168–176. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The Uptake and Bioaccumulation of Heavy Metals by Food Plants, Their Effects on Plants Nutrients, and Associated Health Risk: A Review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Kumar, A.; Shukla, R.; Singh, P.; Prasad, C.S.; Dubey, N.K. Assessment of Thymus vulgaris L. Essential Oil as a Safe Botanical Preservative against Post Harvest Fungal Infestation of Food Commodities. Innov. Food Sci. Emerg. Technol. 2008, 9, 575–580. [Google Scholar] [CrossRef]
- Udincev, S.N.; Zhiljakova, T.P.; Melnikov, D.P. Prospects of Using Thyme Grass and Meal. Pig-Breeding 2010, 18–21. [Google Scholar]
- Ismail, F.S.A.; El-Gogary, M.R.; El-Morsy, N. Impact of Dietary Supplementation of Different Levels of Thyme and Its Essential Oils on Performance, Blood Parameters, Metabolic and Immune Response of Broiler Chickens. Egypt. Poult. Sci. J. 2019, 39, 365–379. [Google Scholar] [CrossRef] [Green Version]
- Bączek, K.; Pióro-Jabrucka, E.; Kosakowska, O.; Węglarz, Z. Intraspecific Variability of Wild Thyme (Thymus serpyllum L.) Occurring in Poland. J. Appl. Res. Med. Aromat. Plants 2019, 12, 30–35. [Google Scholar] [CrossRef]
- Chudnovskaya, G.V. Thymus serpyllum L. in East Transbaikalia. Bull. Kemerovo State Univ. 2013, 4, 12–13. [Google Scholar] [CrossRef]
- Rabzhaeva, A.N.; Zhigzhitzhapova, S.V.; Radnaeva, L.D. Component Composition of the Essential Oils of Thymus baicalensis Serg. (Lamiaceae), Growning in the Eastern Siberia and Mongolia. Chem. Plant Raw Mater. 2015, 2, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical Composition, Antimicrobial, Antioxidant and Antitumor Activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. Essential Oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Taghouti, M.; Martins-Gomes, C.; Félix, L.M.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M.; Silva, A.M. Polyphenol Composition and Biological Activity of Thymus citriodorus and Thymus vulgaris: Comparison with Endemic Iberian Thymus Species. Food Chem. 2020, 331, 127362. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.J.; White, P.J.; Mead, A.; Broadley, M.R. Phylogenetic Variation in the Silicon Composition of Plants. Ann. Bot. 2005, 96, 1027–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moradi, P.; Ford-Lloyd, B.; Pritchard, J. Metabolomic Approach Reveals the Biochemical Mechanisms Underlying Drought Stress Tolerance in Thyme. Anal. Biochem. 2017, 527, 49–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zava, D.T.; Dollbaum, C.M.; Blen, M. Estrogen and Progestin Bioactivity of Foods, Herbs, and Spices. Exp. Biol. Med. 1998, 217, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Dean, M.; Murphy, B.T.; Burdette, J.E. Phytosteroids beyond Estrogens: Regulators of Reproductive and Endocrine Function in Natural Products. Mol. Cell. Endocrinol. 2017, 442, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Marino, M.; Bersani, C.; Comi, G. Antimicrobial Activity of the Essential Oils of Thymus vulgaris L. Measured Using a Bioimpedometric Method. J. Food Prot. 1999, 62, 1017–1023. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Souto, E.B.; Cosme, F.; Nunes, F.M.; Silva, A.M. Thymus carnosus Extracts Induce Anti-Proliferative Activity in Caco-2 Cells through Mechanisms That Involve Cell Cycle Arrest and Apoptosis. J. Funct. Foods 2019, 54, 128–135. [Google Scholar] [CrossRef]
- Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; et al. Thymus musilii Velen. as a Promising Source of Potent Bioactive Compounds with Its Pharmacological Properties: In Vitro and in Silico Analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Silva, A.M.; Martins-Gomes, C.; Souto, E.B.; Schäfer, J.; Santos, J.A.; Bunzel, M.; Nunes, F.M. Thymus zygis Subsp. zygis an Endemic Portuguese Plant: Phytochemical Profiling, Antioxidant, Anti-Proliferative and Anti-Inflammatory Activities. Antioxidants 2020, 9, 482. [Google Scholar] [CrossRef]
- Arsenijević, J.; Marković, J.; Šoštarić, I.; Ražić, S. A Chemometrics as a Powerful Tool in the Elucidation of the Role of Metals in the Biosynthesis of Volatile Organic Compounds in Hungarian Thyme Samples. Plant Physiol. Biochem. 2013, 71, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Kashin, V.K. Conditionally Essential Microelements in the Medicinal Herbs of Transbaikalia. Chem. Sustain. Dev. 2011, 19, 237–244. [Google Scholar]
- Garcia, E.; Cabrera, C.; Lorenzo, M.L.; López, M.C. Chromium Levels in Spices and Aromatic Herbs. Sci. Total Environ. 2000, 247, 51–56. [Google Scholar] [CrossRef]
- López, F.F.; Cabrera, C.; Lorenzo, M.L.; López, M.C. Aluminium Levels in Spices and Aromatic Herbs. Sci. Total Environ. 2000, 257, 191–197. [Google Scholar] [CrossRef]
- Chizzola, R.; Michitsch, H.; Franz, C. Monitoring of Metallic Micronutrients and Heavy Metals in Herbs, Spices and Medicinal Plants from Austria. Eur. Food Res. Technol. 2003, 216, 407–411. [Google Scholar] [CrossRef]
- Rihawy, M.S.; Bakraji, E.H.; Aref, S.; Shaban, R. Elemental Investigation of Syrian Medicinal Plants Using PIXE Analysis. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 2790–2793. [Google Scholar] [CrossRef]
- Kara, D. Evaluation of Trace Metal Concentrations in Some Herbs and Herbal Teas by Principal Component Analysis. Food Chem. 2009, 114, 347–354. [Google Scholar] [CrossRef]
- Karadaş, C.; Kara, D. Chemometric Approach to Evaluate Trace Metal Concentrations in Some Spices and Herbs. Food Chem. 2012, 130, 196–202. [Google Scholar] [CrossRef]
- De La Calle, I.; Costas, M.; Cabaleiro, N.; Lavilla, I.; Bendicho, C. Fast Method for Multielemental Analysis of Plants and Discrimination According to the Anatomical Part by Total Reflection X-ray Fluorescence Spectrometry. Food Chem. 2013, 138, 234–241. [Google Scholar] [CrossRef]
- Gaur, S.; Kumar, J.; Kumar, D.; Chauhan, D.K.; Prasad, S.M.; Srivastava, P.K. Fascinating Impact of Silicon and Silicon Transporters in Plants: A Review. Ecotoxicol. Environ. Saf. 2020, 202, 110885. [Google Scholar] [CrossRef]
- Vasil’eva, I.E.; Shabanova, E.V. Determination of Trace Elements in Plants Using the Direct Current Arc Atomic-Emission Spectrometry. Anal. Kontrol 2019, 23, 298–313. [Google Scholar] [CrossRef] [Green Version]
- Shabanova, E.V.; Vasil’eva, I.E.; Tausenev, D.S.; Scherbarth, S.; Pierau, U. Features of «Plants» Cluster from the Reference Materials Collection IGC SB RAS. Meas. Stand. Ref. Mater. 2021, 17, 45–61. [Google Scholar] [CrossRef]
- Arnautov, N.V. Certified Reference Materials of the Chemical Composition of Natural Mineral Substances, 1st ed.; Institute of Geology and Geophysics SB RAS: Novosibirsk, Russia, 1987. [Google Scholar]
- Yan, M.; Cheng, Z. Study and Application of Geochemical Reference Materials in the Institute of Geophysical and Geochemical Exploration (IGGE), China. Geostand. Geoanalytical Res. 2007, 31, 301–309. [Google Scholar] [CrossRef]
- Govindaraju, K. 1994 Compilation of Working Values and Sample Description for 383 Geostandards. Geostand. Newsl. 1994, 18, 1–47. [Google Scholar] [CrossRef]
- NSAM. Determination of Elemental Composition of Plant Samples (Grass, Leaves) by Atomic Emission and Mass Spectral Analysis Methods, 1st ed.; VIMS: Moscow, Russia, 2011. [Google Scholar]
- Sucharová, J.; Suchara, I. Determination of 36 Elements in Plant Reference Materials with Different Si Contents by Inductively Coupled Plasma Mass Spectrometry: Comparison of Microwave Digestions Assisted by Three Types of Digestion Mixtures. Anal. Chim. Acta 2006, 576, 163–176. [Google Scholar] [CrossRef]
- Semhi, K.; Clauer, N.; Chaudhuri, S. Variable Element Transfers from an Illite-Rich Substrate to Growing Plants during a Three-Month Experiment. Appl. Clay Sci. 2012, 57, 17–24. [Google Scholar] [CrossRef]
- Usman, Y.M.; Nasiru, Y.P.; Modibbo, U.U. Health Risk Assessment on Humans by Contamination of Heavy Metals in Some Edible Crops and Fish at Galena Mining Area of Nahuta, Alkaleri Local Government Area, Bauchi State, Nigeria. Afr. J. Pure Appl. Chem. 2020, 14, 42–50. [Google Scholar] [CrossRef]
Element | Soil | Roots | Stems | Leaves | Flowers | Gathering Place (1 or 2) * | Range of Element Content in the Dried Plants [1,2] |
---|---|---|---|---|---|---|---|
Al | 85,850 | 21,550 | 5540 | 6700 | 6280 | 1 | <100–10,000 |
56,950 | 1710 | 1900 | 2140 | 9500 | 2 | ||
B | 25.1 | 18.0 | 20.0 | 27.1 | 22.5 | 1 | 2–800 |
9.5 | 15.1 | 13.6 | 17.6 | 18.0 | 2 | ||
Ba | 411 | 271 | 236 | 220 | 126 | 1 | 1–160 |
93 | 73 | 112 | 117 | 113 | 2 | ||
Be | 2.85 | 0.57 | 0.26 | 0.20 | 0.25 | 1 | <0.001–7 |
0.61 | 0.03 | 0.06 | 0.07 | 0.10 | 2 | ||
Ca | 8495 | 7720 | 7245 | 8715 | 8820 | 1 | 3000–100,000 |
44,250 | 6035 | 7795 | 10,450 | 20,850 | 2 | ||
Co | 4.2 | 2.2 | 1.3 | 1.0 | 0.9 | 1 | 0.05–10 |
28.7 | 1.7 | 2.4 | 1.6 | 4.2 | 2 | ||
Cr | 36.4 | 10.5 | 4.6 | 3.3 | 2.3 | 1 | 1–1100 |
153 | 9.6 | 10 | 10 | 54 | 2 | ||
Cu | 23 | 16 | 20 | 13 | 29 | 1 | 1–500 |
60 | 29 | 24 | 32 | 39 | 2 | ||
Fe | 12,950 | 7095 | 2565 | 2520 | 1945 | 1 | 300–100,000 |
49,500 | 1475 | 2000 | 1975 | 6795 | 2 | ||
Ga | 13.0 | 4.2 | 2.3 | 1.3 | 1.6 | 1 | 0.02–16 |
11.8 | 0.7 | 1.2 | 0.9 | 2.4 | 2 | ||
K | 38,400 | 8050 | 16,100 | 5040 | 16,100 | 1 | 5000–80,000 |
32,500 | 8480 | 26,700 | 19,200 | 13,900 | 2 | ||
Li | 9.2 | 2.9 | 2.6 | 2.0 | 4.0 | 1 | 0.02–1000 |
11.7 | 2.0 | 2.0 | 2.0 | 9.0 | 2 | ||
Mg | 2450 | 2010 | 1380 | 2150 | 2100 | 1 | 200–60,000 |
34,800 | 2500 | 3200 | 5025 | 12,700 | 2 | ||
Mn | 262 | 284 | 155 | 132 | 122 | 1 | 15–330 |
1043 | 70 | 96 | 114 | 240 | 2 | ||
Na | 29,400 | 5050 | 4365 | 2140 | 3930 | 1 | 200–100,000 |
8545 | 386 | 1730 | 1315 | 3290 | 2 | ||
Ni | 17.8 | 14.7 | 10.1 | 10.8 | 7.8 | 1 | 0.05–50 |
62.6 | 15.2 | 9.3 | 9.4 | 30.2 | 2 | ||
P | 278 | 651 | 995 | 1165 | 1600 | 1 | 100–70,000 |
360 | 820 | 995 | 1155 | 1760 | 2 | ||
Pb | 21.0 | 6.1 | 3.2 | 1.3 | 1.9 | 1 | 0.01–2500 |
25.4 | 0.5 | 1.2 | 0.6 | 1.1 | 2 | ||
Si | 316,500 | 80,000 | 29,100 | 29,100 | 37,000 | 1 | 1000–100,000 |
258,000 | 7865 | 12,950 | 10,900 | 37,000 | 2 | ||
Sr | 103 | 110 | 89 | 86 | 64 | 1 | 1.5–600 |
149 | 49 | 45 | 57 | 52 | 2 | ||
Ti | 1640 | 1007 | 498 | 451 | 400 | 1 | 0.15–80 |
2640 | 98 | 120 | 133 | 396 | 2 | ||
V | 23 | 16 | 20 | 13 | 29 | 1 | 0.2–1000 |
60 | 29 | 24 | 32 | 39 | 2 | ||
Zn | 71 | 61 | 52 | 45 | 61 | 1 | 5–250 |
52 | 49 | 50 | 48 | 51 | 2 | ||
Zr | 455 | 62 | 27 | 23 | 50 | 1 | 0.005–2.6 |
30.4 | 1.0 | 5.5 | 2.5 | 4 | 2 |
Element | Thymus vulgaris | Thymus vulgaris | Thymus serpyllum | Thymus marschallianus | Thyme (Thymbra spicata) | Thymus vulgaris |
Al | 6.35–7.90 | |||||
Ba | 81.6 | |||||
Ca | 7759 | 21,100 | ||||
Co | 0.15 | |||||
Cr | 0.83 | 0.57 | ||||
Cu | 4.1 | 7.2 | 6.1 | 8.8 | ||
Fe | 111.5 | 267.3 | 440 | 427 | ||
K | 14,708 | 14,700 | ||||
Mg | 2115 | |||||
Mn | 60.9 | 84.9 | 116 | 19.3 | ||
Na | 106.5 | |||||
Ni | 1.5 | |||||
Pb | 0.62 | 1.12 | ||||
Si | 22,100 | |||||
Sr | 45.6 | 26.8 | ||||
Zn | 32.8 | 14.4 | 22.4 | 35.1 | ||
Gathering place | Spain, supermarket | Austria, near Vienna | Turkey, supermarket | Syria, supermarket | ||
Method | ETA–AAS | ETA–AAS, FAAS | ICP–MS | PIXE | ||
Reference | [25,26] | [27] | [15] | [29] | [28] | |
Element | Thymus vulgaris, Labiatae | Thyme pannonicus All. (Lamiaceae) | Thymus vulgaris | Thymus serpyllum | Thymus baikalensis | |
Al | 6700 | 2140 | ||||
Ba | 18.06 | 200 | 117 | |||
Ca | 13,810 | 7886.1–26,580.94 | 18,066 | 8715 | 10,450 | |
Co | 0.193 | 1.0 | 1.6 | |||
Cr | 0.97 | 0.41–1.41 | 3.3 | 10 | ||
Cu | 12.17 | 7.04–14.59 | 15 | 13 | 32 | |
Fe | 301 | 89.5–749.91 | 1194 | 2520 | 1975 | |
K | 8006.06–23,066.93 | 10,160 | 5040 | 19,200 | ||
Mg | 1670 | 1820.34–3802.95 | 2150 | 5025 | ||
Mn | 44.5 | 20.54–219.09 | 150 | 132 | 114 | |
Na | 2.53–114.01 | 2140 | 1315 | |||
Ni | 2.34 | 1.35–16.22 | 10.8 | 9.4 | ||
Pb | 1.30 | 0.60 | ||||
Si | 29,100 | 10,900 | ||||
Sr | 27.60 | 86 | 57 | |||
Zn | 20.4 | 33.85–106.66 | 51 | 44.7 | 48.5 | |
Gathering place | Turkey, supermarket | Serbia | Spain | Mongolia, Ulaanbaatar | Russia, Irkutsk | |
Method | ICP–MS, ICP–AES | ICP–AES, FAAS, GFAAS | TRXF | DC–arc AES | ||
Reference | [30] | [23] | [31] | This article |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasil’eva, I.E.; Shabanova, E.V.; Tsagaan, B.; Bymbaa, K. Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions. Appl. Sci. 2022, 12, 3904. https://doi.org/10.3390/app12083904
Vasil’eva IE, Shabanova EV, Tsagaan B, Bymbaa K. Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions. Applied Sciences. 2022; 12(8):3904. https://doi.org/10.3390/app12083904
Chicago/Turabian StyleVasil’eva, Irina E., Elena V. Shabanova, Byambasuren Tsagaan, and Khuukhenkhuu Bymbaa. 2022. "Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions" Applied Sciences 12, no. 8: 3904. https://doi.org/10.3390/app12083904
APA StyleVasil’eva, I. E., Shabanova, E. V., Tsagaan, B., & Bymbaa, K. (2022). Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions. Applied Sciences, 12(8), 3904. https://doi.org/10.3390/app12083904