Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications
Abstract
:1. Introduction
2. Governing Principles of Biomechanics
2.1. Structural Mechanics of Cardiovascular Tissue
2.1.1. Constitutive Equations
Passive Properties
Active Properties
2.2. Fluid Mechanics of Blood Flow
Constitutive Equations
2.3. Fluid-Structure Interactions (FSI)
2.4. Growth and Remodeling Models by the Constrained Mixture Theory
2.5. Summary
3. Numerical Methods
3.1. Finite Volume Method
3.2. Finite Element Method (FEM)
3.3. Summary
4. Inverse Problems
4.1. Direct Inverse Methods
4.2. Iterative Inverse Methods
4.2.1. Target Function
Structural Tissue Mechanics
Fluid Mechanics and FSI
4.2.2. Optimization Algorithms
Updating by Differentiation of Target Function
Updating with No Differentiation of Target Function
Statistics-Based Methods
4.2.3. Constraints
4.3. Summary
5. Medical Imaging-Based Kinematics
Technology | Technique | Principle | Resolution | Applications |
---|---|---|---|---|
US | Speckle Tracking | Acoustic response to the interaction of ultrasound signals with tissue fibers. | Spatial and displacement resolution < 1 mm/pixel Real-time temporal resolution. | Identification of: septal defects, CHD, valve structure. Assessment of cardiac and aortic function. |
MRI | Tissue tagging | Local perturbation of myocardium magnetization with selective radiofrequency saturation sequences | Spatial and displacement resolution ~1 mm Tag spacing ~4 mm 25 images per cardiac cycle. | Assessment of cardiac function; motion and deformation of myocardium, skeletal muscle, lung tissue and tongue. |
DENSE MRI | Applied magnetic field gradients produce a phase shift on proton spins proportional to its relative displacement. | Pixel size ~2.5 mm for myocardial motion [149], ~1.3 mm for aortic motion [150] Displacement resolution < 0.1 mm. 30 images per cardiac cycle | Assessment of myocardial and aortic motion, deformation, and function. |
Technology | Technique | Principle | Resolution | Applications |
---|---|---|---|---|
US | Echo and Vector Doppler | Measurement of frequency shift of the reflected acoustic wave. | Spatial resolution <1 mm/pixel | Identification of: septal defects, CHD, valve structure. Assessment of cardiac and arterial function. Prenatal care. |
MRI | 2D PC | Applied magnetic field gradients produce a phase shift on proton spins proportional to its relative velocity. | Pixel size ~1.5 mm 30 images per cardiac cycle | Assessment of cardiac, arterial, and venous flow, cardiac output, regurgitant flow, pulse wave velocity. |
4D flow | Pixel size ~2.5 mm 25 images per cardiac cycle | Same as 2D PC plus measurements of wall shear stress, vorticity and pressure drop. |
5.1. Ultrasound Technology (US)
5.1.1. Echo and Vector Doppler
5.1.2. Speckle Tracking
5.2. Magnetic Resonance Imaging (MRI)
5.2.1. Tissue Tagging
5.2.2. Phase-Contrast
2D CINE PC-MRI and 4D Flow MRI
Displacement Encoding with Stimulated Echoes (DENSE)
5.2.3. Other Relevant MRI-Based Scanning Modalities
5.3. Computerized Tomography (CT)
5.4. Summary
6. Applications to Cardiovascular Medicine
6.1. The Unloaded Reference Configuration in Cardiovascular Mechanics
6.2. The Heart
6.2.1. Properties of the Healthy and Infarcted Ventricular Wall
Study | Clinical Data | Forward Problem | Inverse Problem | |||
---|---|---|---|---|---|---|
Rumindo et al., 2020 [247] | Population | 12 H | Reference | End of diastole | Target function | Least squared error to Klotz P-V |
Pathology | None | Passive model | Hom. Guccione | |||
Data | Cine MRI | Active model | 1 eq. active stress | Opt. algorithm | Nelder Mead. | |
Anatomy | LV with RBFO by Rijcken et al. | Boundary | ICP, TF epicardium Constrained base | |||
Zhang et al., 2020 [17] | Population | 1H 5D | Reference | Early diastole | Target function | Volume change error and segment-wise strain error |
Pathology | FMR-CAD | Passive model | Het. Guccione | |||
Data | Cine MRI, TT, Stress perfusion MRI, GE MRI, 4D US, Hand cuff pressure | Active model | 2 eq. active stress | Opt. algorithm | Non-specified | |
Anatomy | BV in 17 AHA regions with RBFO by Bayer et al. | Boundary | ICP, TF epicardium, Constrained base | |||
Balaban et al., 2018 [141] | Population | 1D | Reference | End of diastole | Target function | Deformation gradient error. |
Pathology | LBBB and CI | Passive model | Het. Holzapfel-Ogden | |||
Data | 4D US, USST, GE MRI, ICP | Active model | None | Opt. algorithm | Sequential quadratic programming with a first-order Tikhonov functional constraint | |
Anatomy | LV in 17 AHA regions with RBFO by Bayer et al. | Boundary | ICP, Constrained apex, EF at base. | |||
Wang et al., 2018 [248] | Population | 5H 19D | Reference | Diastasis | Target function | Least-squared error to P-V curve. |
Pathology | HFrEF, HFpEF | Passive model | Hom. Guccione | |||
Data | Cine MRI, ICP | Active model | None | Opt. algorithm | Non-specified | |
Anatomy | LV with RBFO by Nielsen et al. | Boundary | * IPC * Constrained base | |||
Finsberg et al., 2019 [249] | Population | 6H 12D | Reference | Unloaded | Target function | Coordinate error for passive properties. P-V curve and strain error for active properties. |
Pathology | PAH | Passive model | Hom. Holzapfel-Ogden | |||
Data | Cine MRI, ICP | Active model | 1 eq. active strain | Opt. algorithm | Sequential quadratic programming algorithm | |
Anatomy | BV with RBFO by Bayer et al. | Boundary | ICP, EF at base, EF pericardium | |||
Palit et al., 2018 [108] | Population | 5H | Reference | Early Diastole | Target function | Least squared error to Klotz P-V |
Pathology | None | Passive model | Hom. Holzapfel-Ogden | |||
Data | Cine MRI | Active model | None | Opt. algorithm | Genetic Algorithm | |
Anatomy | BV with RBFO by Bayer et al. | Boundary | * Assumed ICP * Constrained base | |||
Finsberg et al., 2018 [235] | Population | 7H 7D | Reference | Unloaded | Target function | Coordinate error for passive properties. P-V curve and strain error for active properties. |
Pathology | LBBB | Passive model | Hom. Holzapfel-Ogden | |||
Data | 4D US, USST, ICP | Active model | 1 eq. active stress, 1 eq. active strain | Opt. algorithm | Sequential quadratic programming algorithm | |
Anatomy | LV with RBFO by Bayer et al. | Boundary | ICP, EF at base, EF pericardium | |||
Asner et al., 2015, 2017 [250,251] | Population | 3H 3P | Reference | End of diastole | Target function | P-V curve and nodal displacement error |
Pathology | Dilated cardiomyopathy | Passive model | Hom. Holzapfel-Ogden | |||
Data | Cine MRI, TT, PC MRI | Active model | 1 eq. active stress | Opt. algorithm | Shamanskii–Newton Raphson algorithm | |
Anatomy | LV with fiber orientation from canine histology | Boundary | Weak formulation for volume and displacement | |||
Nasopoulou et al., 2017 [252] | Population | 1H 7D | Reference | Lower ventricular pressure | Target function | Energy balance error and displacement error |
Pathology | Arrythmia | Passive model | Hom. Guccione | |||
Data | Cine MRI, ICP | Active model | None | Opt. algorithm | Non-specified | |
Anatomy | LV with fiber orientation from canine histology | Boundary | ICP, displacement at apex and base, TF epicardium | |||
Gao et al., 2017 [253] | Population | 27H 11D | Reference | End of diastole | Target function | Volume error and strain error. |
Pathology | Acute myocardial infraction | Passive model | Het. Holzapfel-Ogden | |||
Data | Cine MRI, GE MRI, Hand-cuff pressure | Active model | 2eq. active stress | Opt. algorithm | Gaussian processes and automatic relevance determination algorithm | |
Anatomy | LV in 17 AHA regions with RBFO by Potse et al. | Boundary | ICP, TF epicardium | |||
Genet et al., 2014 [110] | Population | 5H | Reference | Early diastole | Target function | Least-squared-error to normalized Klotz P-V curve |
Pathology | None | Passive model | Hom. Guccione | |||
Data | Cine MRI, TT | Active model | Hom. 1eq. active stress | Opt. algorithm | Derivative-free quadratic approximation algorithm | |
Anatomy | LV with fiber orientation from canine histology | Boundary | Volume change, TF epicardium, Constrained base. | |||
Marchesseau et al., 2013 [254] | Population | 8H 3D | Reference | End of diastole | Target function | Volume change error |
Pathology | HFrEF | Passive model | Region heterogeneous Mooney-Rivlin | |||
Data | Cine MRI, ICP, Electrophysiology | Active model | 2 eq. active stress | Opt. algorithm | Kalman filter | |
Anatomy | BV divided in 17 regions with RBFO by Bayer et al. | Boundary | ICP, TF epicardium, Constrained base | |||
Xi et al., 2013, 2011a, 2011b [47,255,256] | Population | 1H 2D | Reference | Unloaded | Target function | Nodal coordinate error |
Pathology | HFrEF | Passive model | Hom. Guccione | |||
Data | Cine MRI, TT, ICP | Active model | 1 eq. active stress | Opt. algorithm | Parameter sweeping | |
Anatomy | LV with fiber orientation from canine histology | Boundary | ICP, TF epicardium, Displacement at apex and base. |
Homogeneous Models
Heterogeneous Models
6.3. Valves and Leaflets
6.4. Arterial Wall
Study | Clinical Data | Forward Problem | Inverse Problem | |||
---|---|---|---|---|---|---|
Bracamonte et al., 2022, 2021, 2020 [14,150,280] | Population | 27H | Reference | Diastole | Target function | Least-squared displacement error |
Pathology | None | Passive model | Hom. Fung orthotropic | |||
Data | Cine and DENSE MRI | Active model | None | Opt. algorithm | Constrained Powell | |
Anatomy | IAA, DTA, DAA | Boundary | LP, Het. EF at adventitia | |||
Pourmodheji et al., 2021 [5] | Population | 2D | Reference | Diastole | Target function | P-V curve error |
Pathology | PAH and CHD | Passive model | Constrained 4-fiber family | |||
Data | IVP, Cine MRI, PC MRI | Active model | None | Opt. algorithm | L-BFGS | |
Anatomy | Pulmonary Artery | Boundary | LP, TF adventitia | |||
Giuseppe et al., 2021 [281] Farzaneh et al., 2019 [112] | Population | 30D | Reference | Diastole | Target function | Systolic shape. |
Pathology | aATA, w BAV and TAV | Passive model | Het. Linear elastic | |||
Data | CT scans | Active model | None | Opt. algorithm | Direct solution | |
Anatomy | Thoracic aorta | Boundary | LP and shape change | |||
Disseldorp et al., 2019, 2016 [282,283] | Population | 30H 65D, 40D | Reference | Unloaded | Target function | Displacement error |
Pathology | AAA | Passive model | Hom. Neo-Hookean | |||
Data | 4D US, ST, CT scan, Hand cuff pressure | Active model | None | Opt. algorithm | Nelder-Mead | |
Anatomy | IAA | Boundary | LP, AP | |||
Maso Talou et al., 2018 [284] | Population | 4D | Reference | Unloaded | Target function | Displacement error |
Pathology | Atherosclerosis | Passive model | Het. Neo-Hookean | |||
Data | IVUS | Active model | None | Opt. algorithm | Kalman filter | |
Anatomy | Carotid artery bifurcation | Boundary | LP, EF at adventitia | |||
Liu et al., 2018 [113] | Population | 4D | Reference | Diastole | Target function | Systolic shape error |
Pathology | aATA | Passive model | Hom. Holzapfel-Ogden | |||
Data | CT scans | Active model | None | Opt. algorithm | multi-resolution direct search method | |
Anatomy | Ascending Aorta | Boundary | LP, AP | |||
Wittek et al., 2016 [125] | Population | 5H 1D | Reference | Axially unloaded | Target function | Displacement error |
Pathology | PAO | Passive model | Hom. Holzapfel-Ogden | |||
Data | 4D US, ST, Hand cuff pressure | Active model | None | Opt. algorithm | Nelder-Mead with stochastic Montecarlo sampling | |
Anatomy | IAA | Boundary | LP, AP | |||
Wang et al., 2017 [285] Liu et al., 2012 [286] | Population | 8D | Reference | Unloaded | Target function | Area change error |
Pathology | Atherosclerosis | Passive model | Mooney-Rivlin | |||
Data | Cine MRI, MC MRI, Hand cuff pressure | Active model | None | Opt. algorithm | L-BFGS-B | |
Anatomy | Carotid artery bifurcation | Boundary | LP, TF adventitia | |||
Krishnan et al., 2015 [225] | Population | 4D | Reference | Unloaded | Target function | Least-squared strain error |
Pathology | aATA | Passive model | Hom. Holzapfel-Ogden | |||
Data | CT scan, DENSE MRI | Active model | None | Opt. algorithm | Non-specified | |
Anatomy | Ascending Aorta | Boundary | LP, TF adventitia | |||
Karatolios et al., 2013 [164] | Population | 6H 2D | Reference | Axially unloaded | Target function | Displacement error |
Pathology | AAA | Passive model | Hom. Holzapfel-Ogden | |||
Data | 4D US, ST, Hand cuff pressure | Active model | None | Opt. algorithm | Nelder-Mead | |
Anatomy | Abdominal aorta. | Boundary | LP, AP | |||
Wittek et al., 2013 [115] | Population | 5H | Reference | Axially unloaded | Target function | Displacement error |
Pathology | None | Passive model | Hom. Holzapfel-Ogden | |||
Data | 4D US, ST, Hand cuff pressure | Active model | None | Opt. algorithm | Nelder-Mead | |
Anatomy | IAA | Boundary | LP, AP | |||
Franquet et al., 2013 [114] | Population | 2H | Reference | Diastole | Target function | Systolic shape error |
Pathology | None | Passive model | Hom. Linear isotropic | |||
Data | Cine MRI, AT pressure | Active model | None | Opt. algorithm | Levenberg–Marquardt | |
Anatomy | CCA | Boundary | LP, EF at adventitia | |||
Masson et al., 2010 [287] | Population | 2H | Reference | Cut-open stress-free | Target function | Pressure waveform error |
Pathology | None | Passive model | Hom. Holzapfel-Ogden | |||
Data | 2D US, AT pressure | Active model | 1 eq. active stress | Opt. algorithm | Levenberg–Marquardt | |
Anatomy | CCA (idealized) | Boundary | Area change, Non-linear EF at adventitia. | |||
Taviani et al., 2008 [288] | Population | 3H | Reference | Diastole | Target function | Area change error |
Pathology | None | Passive model | Hom. Linear isotropic | |||
Data | Cine MRI, AT pressure | Active model | None | Opt. algorithm | Non-specified | |
Anatomy | CCA | Boundary | LP, TF adventitia |
6.4.1. Aneurysms
6.4.2. Atherosclerotic Plaques
6.5. Hemodynamics
6.5.1. Rigid Wall Models
6.5.2. Fluid-Structure Interaction (FSI) Models
6.6. Summary
7. Closing Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kakisis, J.D.; Liapis, C.D.; Sumpio, B.E. Effects of Cyclic Strain on Vascular Cells. Endothelium 2004, 11, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-I.; Wang, Y. Cell response to surface and architecture of tissue engineering scaffolds. In Regenerative Medicine and Tissue Engineering—Cells and Biomaterials; Eberli, D., Ed.; InTech Open Access Publisher: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.L.; Goldstein, S.A.; Guilak, F. Functional Tissue Engineering: The Role of Biomechanics. J. Biomech. Eng. 2000, 122, 570–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, B.T.; Pickard, S.S.; Chan, F.P.; Tsao, P.S.; Taylor, C.A.; Feinstein, J.A. Wall Shear Stress is Decreased in the Pulmonary Arteries of Patients with Pulmonary Arterial Hypertension: An Image-Based, Computational Fluid Dynamics Study. Pulm. Circ. 2012, 2, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourmodheji, R.; Jiang, Z.; Tossas-Betancourt, C.; Figueroa, C.A.; Baek, S.; Lee, L.-C. Inverse modeling framework for characterizing patient-specific microstructural changes in the pulmonary arteries. J. Mech. Behav. Biomed. Mater. 2021, 119, 104448. [Google Scholar] [CrossRef] [PubMed]
- Watton, P.N.; Hill, N.A. Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech. Model. Mechanobiol. 2009, 8, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Neal, M.L.; Kerckhoffs, R. Current progress in patient-specific modeling. Brief. Bioinform. 2010, 11, 111–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsden, A.; Esmaily-Moghadam, M. Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support. Appl. Mech. Rev. 2015, 67, 030804. [Google Scholar] [CrossRef]
- Itatani, K.; Miyazaki, S.; Furusawa, T.; Numata, S.; Yamazaki, S.; Morimoto, K.; Makino, R.; Morichi, H.; Nishino, T.; Yaku, H. New imaging tools in cardiovascular medicine: Computational fluid dynamics and 4D flow MRI. Gen. Thorac. Cardiovasc. Surg. 2017, 65, 611–621. [Google Scholar] [CrossRef]
- Wilson, J.S.; Zhong, X.; Hair, J.B.; Taylor, W.R.; Oshinski, J.N. In Vivo Quantification of Regional Circumferential Green Strain in the Thoracic and Abdominal Aorta by Two-Dimensional Spiral Cine DENSE MRI. J. Biomech. Eng. 2019, 141, 0609011–06090111. [Google Scholar] [CrossRef]
- Kong, F.; Shadden, S.C. Automating Model Generation for Image-Based Cardiac Flow Simulation. J. Biomech. Eng. 2020, 142, 1110111–11101113. [Google Scholar] [CrossRef]
- Markl, M.; Schnell, S.; Barker, A. 4D Flow Imaging: Current Status to Future Clinical Applications. Curr. Cardiol. Rep. 2014, 16, 481. [Google Scholar] [CrossRef]
- Wilson, J.S.; Taylor, W.R.; Oshinski, J. Assessment of the regional distribution of normalized circumferential strain in the thoracic and abdominal aorta using DENSE cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2019, 21, 59. [Google Scholar] [CrossRef]
- Bracamonte, J.H.; Wilson, J.S.; Soares, J.S. Assessing Patient-Specific Mechanical Properties of Aortic Wall and Peri-Aortic Structures from In Vivo DENSE Magnetic Resonance Imaging Using an Inverse Finite Element Method and Elastic Foundation Boundary Conditions. J. Biomech. Eng. 2020, 142, 1210111–12101113. [Google Scholar] [CrossRef]
- Bonnet, M.; Constantinescu, A. Inverse problems in elasticity. Inverse Probl. 2005, 21, R1–R50. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Falisse, A.; Severijns, P.; Overbergh, T.; Moke, L.; Scheys, L.; De Groote, F.; Jonkers, I. A Dynamic Optimization Approach for Solving Spine Kinematics While Calibrating Subject-Specific Mechanical Properties. Ann. Biomed. Eng. 2021, 49, 2311–2322. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, V.Y.; Morgan, A.E.; Kim, J.; Ge, L.; Guccione, J.M.; Weinsaft, J.W.; Ratcliffe, M.B. A Novel MRI-Based Finite Element Modeling Method for Calculation of Myocardial Ischemia Effect in Patients with Functional Mitral Regurgitation. Front. Physiol. 2020, 11, 158. [Google Scholar] [CrossRef]
- Avazmohammadi, R.; Li, D.S.; Leahy, T.; Shih, E.; Soares, J.S.; Gorman, J.H.; Gorman, R.C.; Sacks, M.S. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: Application to post-infarcted myocardium. Biomech. Model. Mechanobiol. 2018, 17, 31–53. [Google Scholar] [CrossRef]
- Butler, J.P.; Tolić-Nørrelykke, I.M.; Fabry, B.; Fredberg, J.J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Physiol. 2002, 282, C595–C605. [Google Scholar] [CrossRef] [Green Version]
- Tambe, D.T.; Croutelle, U.; Trepat, X.; Park, C.Y.; Kim, J.H.; Millet, E.; Butler, J.P.; Fredberg, J.J. Monolayer Stress Microscopy: Limitations, Artifacts, and Accuracy of Recovered Intercellular Stresses. PLoS ONE 2013, 8, e55172. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Steward, R.L. Probing Endothelial Cell Mechanics through Connexin 43 Disruption. Exp. Mech. 2019, 59, 327–336. [Google Scholar] [CrossRef]
- Banerjee, I.; Carrion, K.; Serrano, R.; Dyo, J.; Sasik, R.; Lund, S.; Willems, E.; Aceves, S.; Meili, R.; Mercola, M.; et al. Cyclic stretch of embryonic cardiomyocytes increases proliferation, growth, and expression while repressing Tgf-β signaling. J. Mol. Cell. Cardiol. 2015, 79, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Pasqualini, F.S.; Agarwal, A.; O’Connor, B.; Liu, Q.; Sheehy, S.P.; Parker, K.K. Traction force microscopy of engineered cardiac tissues. PLoS ONE 2018, 13, e0194706. [Google Scholar] [CrossRef]
- Ateshian, G.A.; Costa, K.D. A frame-invariant formulation of Fung elasticity. J. Biomech. Eng. 2009, 42, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Fung, Y.C. Elasticity of soft tissues in simple elongation. Am. J. Physiol. Content 1967, 213, 1532–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuong, C.J.; Fung, Y.C. Three-Dimensional Stress Distribution in Arteries. J. Biomech. Eng. 1983, 105, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.R.; Hörmann, J.M.; Weigl, M.; Nagler, A.; Chabiniok, R.; Bertoglio, C.; Wall, W.A. The importance of the pericardium for cardiac biomechanics: From physiology to computational modeling. Biomech. Model. Mechanobiol. 2019, 18, 503–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Dang, C.; Garcia, M.; Gregersen, H.; Kassab, G.S. Surrounding tissues affect the passive mechanics of the vessel wall: Theory and experiment. Am. J. Physiol. Circ. Physiol. 2007, 293, 3290–3300. [Google Scholar] [CrossRef]
- Humphrey, J.D. Mechanics of the Arterial Wall: Review and Directions. Crit. Rev. Biomed. Eng. 1995, 23, 1–162. [Google Scholar] [CrossRef]
- Sokolis, D.P.; Savva, G.D.; Papadodima, S.A.; Kourkoulis, S.K. Regional distribution of circumferential residual strains in the human aorta according to age and gender. J. Mech. Behav. Biomed. Mater. 2017, 67, 87–100. [Google Scholar] [CrossRef]
- Sokolis, D.P.; Bompas, A.; Papadodima, S.A.; Kourkoulis, S.K. Variation of Axial Residual Strains along the Course and Circumference of Human Aorta Considering Age and Gender. J. Biomech. Eng. 2020, 142, 0210031–02100313. [Google Scholar] [CrossRef]
- Cardamone, L.; Valentín, A.; Eberth, J.F.; Humphrey, J.D. Origin of axial prestretch and residual stress in arteries. Biomech. Model. Mechanobiol. 2009, 8, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Holzapfel, G.; Gasser, T.; Stadler, M. A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur. J. Mech. A Solids 2002, 21, 441–463. [Google Scholar] [CrossRef]
- Humphrey, J.D.; Na, S. Elastodynamics and Arterial Wall Stress. Ann. Biomed. Eng. 2002, 30, 509–523. [Google Scholar] [CrossRef]
- Akyildiz, A.C.; Speelman, L.; Gijsen, F.J.H. Mechanical properties of human atherosclerotic intima tissue. J. Biomech. 2014, 47, 773–783. [Google Scholar] [CrossRef]
- Wang, Z.; Golob, M.J.; Chesler, N.C. Viscoelastic Properties of Cardiovascular Tissues. Viscoelast. Viscoplast. Mater. 2016, 2, 64. [Google Scholar] [CrossRef] [Green Version]
- Roccabianca, S.; Figueroa, C.A.; Tellides, G.; Humphrey, J.D. Quantification of regional differences in aortic stiffness in the aging human. J. Mech. Behav. Biomed. Mater. 2014, 29, 618–634. [Google Scholar] [CrossRef] [Green Version]
- Guccione, J.M.; McCulloch, A.D.; Waldman, L.K. Passive Material Properties of Intact Ventricular Myocardium Determined from a Cylindrical Model. J. Biomech. Eng. 1991, 113, 42–55. [Google Scholar] [CrossRef]
- Polzer, S.; Gasser, T.; Novak, K.; Man, V.; Tichy, M.; Skacel, P.; Bursa, J. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue. Acta Biomater. 2015, 14, 133–145. [Google Scholar] [CrossRef]
- Spronck, B.; Humphrey, J.D. Arterial Stiffness: Different Metrics, Different Meanings. J. Biomech. Eng. 2019, 141, 0910041–09100412. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, F.; Polzer, S.; Slažanský, M.; Man, V.; Skácel, P. Predictive capabilities of various constitutive models for arterial tissue. J. Mech. Behav. Biomed. Mater. 2018, 78, 369–380. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Ogden, R.W. An arterial constitutive model accounting for collagen content and cross-linking. J. Mech. Phys. Solids 2020, 136, 103682. [Google Scholar] [CrossRef]
- Avazmohammadi, R.; Hill, M.; Simon, M.; Zhang, W.; Sacks, M.S. A novel constitutive model for passive right ventricular myocardium: Evidence for myofiber–collagen fiber mechanical coupling. Biomech. Model. Mechanobiol. 2017, 16, 561–581. [Google Scholar] [CrossRef]
- Sacks, M.S.; Zhang, W.; Wognum, S. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus 2016, 6, 20150090. [Google Scholar] [CrossRef]
- Horgan, C.; Ogden, R.; Saccomandi, G. A theory of stress softening of elastomers based on finite chain extensibility. Proc. R. Soc. A Math. Phys. Eng. Sci. 2004, 460, 1737–1754. [Google Scholar] [CrossRef]
- Hunter, P.J.; McCulloch, A.D.; Ter Keurs, H.E.D.J. Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 1998, 69, 289–331. [Google Scholar] [CrossRef]
- Xi, J.; Lamata, P.; Niederer, S.; Land, S.; Shi, W.; Zhuang, X.; Ourselin, S.; Duckett, S.G.; Shetty, A.K.; Rinaldi, C.A.; et al. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 2013, 17, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Bers, D.M. Cardiac excitation–contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef]
- Pullan, A.J.; Cheng, L.K.; Nash, M.P.; Ghodrati, A.; MacLeod, R.; Brooks, D.H. The Inverse Problem of Electrocardiography. In Comprehensive Electrocardiology; Springer: London, UK, 2010; pp. 299–344. [Google Scholar] [CrossRef]
- Bhagirath, P.; Van Der Graaf, A.; De Hooge, J.; De Groot, N.; Götte, M. Integrated whole-heart computational workflow for inverse potential mapping and personalized simulations. J. Transl. Med. 2016, 14, 147. [Google Scholar] [CrossRef] [Green Version]
- Van Oosterom, A. The inverse problem of bioelectricity: An evaluation. Med. Biol. Eng. Comput. 2012, 50, 891–902. [Google Scholar] [CrossRef]
- Marchesseau, S.; Sermesant, M.; Billet, F.; Delingette, H.; Ayache, N. Personalization of Electromechanical Models of the Cardiac Ventricular Function by Heterogeneous Clinical Data Assimilation. Multi-Modality Card. Imaging Process. Anal. 2015, 17, 293–330. [Google Scholar] [CrossRef]
- Kung, G.L.; Vaseghi, M.; Gahm, J.K.; Shevtsov, J.; Garfinkel, A.; Shivkumar, K.; Ennis, D.B. Microstructural Infarct Border Zone Remodeling in the Post-infarct Swine Heart Measured by Diffusion Tensor MRI. Front. Physiol. 2018, 9, 826. [Google Scholar] [CrossRef] [PubMed]
- Khalique, Z.; Ferreira, P.; Scott, A.D.; Nielles-Vallespin, S.; Firmin, D.N.; Pennell, D.J. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc. Imaging 2020, 13, 1235–1255. [Google Scholar] [CrossRef]
- Bayer, J.D.; Blake, R.C.; Plank, G.; Trayanova, N.A. A Novel Rule-Based Algorithm for Assigning Myocardial Fiber Orientation to Computational Heart Models. Ann. Biomed. Eng. 2012, 40, 2243–2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potse, M.; Dube, B.; Richer, J.; Vinet, A.; Gulrajani, R.M. A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart. IEEE Trans. Biomed. Eng. 2006, 53, 2425–2435. [Google Scholar] [CrossRef]
- Rijcken, J.; Bovendeerd, P.H.M.; Schoofs, A.J.G.; Van Campen, D.H.; Arts, T. Optimization of Cardiac Fiber Orientation for Homogeneous Fiber Strain During Ejection. Ann. Biomed. Eng. 1999, 27, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Barker, A.J.; van Ooij, P.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R.O.; Carr, J.; Collins, J.; Malaisrie, S.C.; et al. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 2014, 72, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Mahalingam, A.; Gawandalkar, U.U.; Kini, G.; Buradi, A.; Araki, T.; Ikeda, N.; Nicolaides, A.; Laird, J.R.; Saba, L.; Suri, J.S. Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries. Cardiovasc. Diagn. Ther. 2016, 6, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Womersley, J.R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 1955, 127, 553–563. [Google Scholar] [CrossRef]
- McDonald, D.A. The relation of pulsatile pressure to flow in arteries. J. Physiol. 1955, 127, 533–552. [Google Scholar] [CrossRef]
- Taylor, M.G. The Discrepancy between Steady- and Oscillatory-Flow Calibration of Flowmeters of the ‘Bristle’and ‘Pendulum’ Types: A Theoretical Study. Phys. Med. Biol. 1958, 2, 324–337. [Google Scholar] [CrossRef]
- Pedley, T.J.; Schroter, R.C.; Sudlow, M.F. Pressure flow relations in branched tubes. J. Physiol. 1969, 204, 114. Available online: https://europepmc.org/article/med/5824621 (accessed on 29 November 2021).
- Williams, M.C.; Rosenblatt, J.S.; Soane, D.S. Theory of Blood Rheology Based on a Statistical Mechanics Treatment of Rouleaux, and Comparisons with Data. Int. J. Polym. Mater. Polym. Biomater. 1993, 21, 57–63. [Google Scholar] [CrossRef]
- Soares, J.S.; Gao, C.; Alemu, Y.; Slepian, M.; Bluestein, D. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach. Ann. Biomed. Eng. 2013, 41, 2318–2333. [Google Scholar] [CrossRef] [Green Version]
- Fedosov, D.A.; Noguchi, H.; Gompper, G. Multiscale modeling of blood flow: From single cells to blood rheology. Biomech. Model. Mechanobiol. 2013, 132, 239–258. [Google Scholar] [CrossRef]
- Lei, H.; Fedosov, D.A.; Caswell, B.; Karniadakis, G.E. Blood flow in small tubes: Quantifying the transition to the non-continuum regime. J. Fluid Mech. 2013, 722, 214–239. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Namgung, B.; Ong, P.K.; Cho, Y.I.; Chun, K.J.; Lim, D. Determination of rheological properties of whole blood with a scanning capillary-tube rheometer using constitutive models. J. Mech. Sci. Technol. 2009, 23, 1718–1726. [Google Scholar] [CrossRef]
- Ameenuddin, M.; Anand, M.; Massoudi, M. Effects of shear-dependent viscosity and hematocrit on blood flow. Appl. Math. Comput. 2019, 356, 299–311. [Google Scholar] [CrossRef]
- Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [Google Scholar] [CrossRef] [Green Version]
- Flamini, V.; DeAnda, A.; Griffith, B.E. Immersed boundary-finite element model of fluid–structure interaction in the aortic root. Theor. Comput. Fluid Dyn. 2015, 30, 139–164. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, X.; Li, Z.; He, G.W. A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J. Comput. Phys. 2009, 228, 7821–7836. [Google Scholar] [CrossRef]
- van Loon, R.; Anderson, P.D.; van de Vosse, F.; Sherwin, S. Comparison of various fluid–structure interaction methods for deformable bodies. Comput. Struct. 2007, 85, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, C.A.; Vignon-Clementel, I.E.; Jansen, K.E.; Hughes, T.J.R.; Taylor, C.A. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 2006, 195, 5685–5706. [Google Scholar] [CrossRef]
- Moireau, P.; Xiao, N.; Astorino, M.; Figueroa, C.A.; Chapelle, D.; Taylor, C.A.; Gerbeau, J.F. External tissue support and fluid–structure simulation in blood flows. Biomech. Model. Mechanobiol. 2012, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Souli, M.; Ouahsine, A.; Lewin, L. ALE formulation for fluid–structure interaction problems. Comput. Methods Appl. Mech. Eng. 2000, 190, 659–675. [Google Scholar] [CrossRef]
- Rodriguez, E.K.; Hoger, A.; McCulloch, A.D. Stress-dependent finite growth in soft elastic tissues. J. Biomech. 1994, 27, 455–467. [Google Scholar] [CrossRef]
- Humphrey, J.D. Constrained Mixture Models of Soft Tissue Growth and Remodeling—Twenty Years after. J. Elast. 2021, 145, 49–75. [Google Scholar] [CrossRef]
- Humphrey, J.D.; Rajagopal, K. A Constrained Mixture Model for Growth and Remodeling of Soft Tissues. Math. Model. Methods Appl. Sci. 2002, 12, 407–430. [Google Scholar] [CrossRef]
- Cyron, C.J.; Aydin, R.C.; Humphrey, J.D. A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue. Biomech. Model. Mechanobiol. 2016, 15, 1389–1403. [Google Scholar] [CrossRef]
- Taylor, C.A.; Hughes, T.J.R.; Zarins, C.K. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 1998, 158, 155–196. [Google Scholar] [CrossRef]
- Simon, B.R.; Kaufmann, M.V.; McAfee, M.A.; Baldwin, A.L. Finite Element Models for Arterial Wall Mechanics. J. Biomech. Eng. 1993, 115, 489–496. [Google Scholar] [CrossRef]
- Updegrove, A.; Wilson, N.M.; Merkow, J.; Lan, H.; Marsden, A.L.; Shadden, S.C. SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Ann. Biomed. Eng. 2016, 45, 525–541. [Google Scholar] [CrossRef]
- Maas, S.A.; Ellis, B.J.; Ateshian, G.A.; Weiss, J.A. FEBio: Finite Elements for Biomechanics. J. Biomech. Eng. 2012, 134, 011005. [Google Scholar] [CrossRef]
- Moukalled, F.D.F.; Mangani, L. The Finite Volume Method in Computational Fluid Dynamics; Springer: New York, NY, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, A.N.; Samarskii, A.A. Homogeneous difference schemes on non-uniform nets. USSR Comput. Math. Math. Phys. 1963, 2, 927–953. [Google Scholar] [CrossRef]
- Cardiff, P.; Demirdžić, I. Thirty Years of the Finite Volume Method for Solid Mechanics. Arch. Comput. Methods Eng. 2021, 28, 3721–3780. [Google Scholar] [CrossRef]
- Li, Y.; Berthiau, G.; Feliachi, M.; Cheriet, A. 3D Finite Volume Modeling of ENDE Using Electromagnetic T-Formulation. J. Sens. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mackerle, J. Finite element modelling and simulations in cardiovascular mechanics and cardiology: A bibliography 1993–2004. Comput. Methods Biomech. Biomed. Eng. 2005, 8, 59–81. [Google Scholar] [CrossRef]
- Fallah, N.A.; Bailey, C.; Cross, M.; Taylor, G. Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis. Appl. Math. Model. 2000, 24, 439–455. [Google Scholar] [CrossRef]
- Jeong, W.; Seong, J. Comparison of effects on technical variances of computational fluid dynamics (CFD) software based on finite element and finite volume methods. Int. J. Mech. Sci. 2014, 78, 19–26. [Google Scholar] [CrossRef]
- Wiederhielm, C.A.; Kobayashi, A.S.; Stromberg, D.D.; Woo, S.L.Y. Structural response of relaxed and constricted arterioles. J. Biomech. 1968, 1, 259–270. [Google Scholar] [CrossRef]
- Ateshian, G.A.; Shim, J.J.; Maas, S.A.; Weiss, J.A. Finite Element Framework for Computational Fluid Dynamics in FEBio. J. Biomech. Eng. 2018, 140, 0210011–02100117. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.J.; Maas, S.A.; Weiss, J.A.; Ateshian, G.A. A Formulation for Fluid Structure-Interactions in FEBio Using Mixture Theory. J. Biomech. Eng. 2019, 141, 0510101–05101015. [Google Scholar] [CrossRef]
- Sabatier, P.C. Inverse Problems—An introduction. Inverse Probl. 1985, 1, 302. [Google Scholar] [CrossRef] [Green Version]
- Grédiac, M.; Toussaint, E.; Pierron, F. Special virtual fields for the direct determination of material parameters with the virtual fields method. 2—Application to in-plane properties. Int. J. Solids Struct. 2002, 39, 2707–2730. [Google Scholar] [CrossRef]
- Grediac, M.; Toussaint, E.; Pierron, F. Special virtual fields for the direct determination of material parameters with the virtual fields method. 1—Principle and definition. Int. J. Solids Struct. 2002, 39, 2691–2705. [Google Scholar] [CrossRef]
- Govindjee, S.; Mihalic, P.A. Computational methods for inverse finite elastostatics. Comput. Methods Appl. Mech. Eng. 1996, 136, 47–57. [Google Scholar] [CrossRef]
- Govindjee, S.; Mihalic, P.A. Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int. J. Numer. Methods Eng. 1998, 43, 821–838. [Google Scholar] [CrossRef]
- Peirlinck, M.; De Beule, M.; Segers, P.; Rebelo, N. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. J. Mech. Behav. Biomed. Mater. 2018, 85, 124–133. [Google Scholar] [CrossRef]
- Tessler, A.; Spangler, J.L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Methods Appl. Mech. Eng. 2005, 194, 327–339. [Google Scholar] [CrossRef]
- Beck, J.V.; A Woodbury, K.A. Inverse problems and parameter estimation: Integration of measurements and analysis. Meas. Sci. Technol. 1998, 9, 839–847. [Google Scholar] [CrossRef]
- Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G. A reduced computational and geometrical framework for inverse problems in hemodynamics. Int. J. Numer. Methods Biomed. Eng. 2013, 29, 741–776. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Liang, L.; Sun, W. A new inverse method for estimation of in vivo mechanical properties of the aortic wall. J. Mech. Behav. Biomed. Mater. 2017, 72, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Cotter, S.L.; Dashti, M.; Robinson, J.C.; Stuart, A.M. Bayesian inverse problems for functions and applications to fluid mechanics. Inverse Probl. 2009, 25, 115008. [Google Scholar] [CrossRef]
- Marsden, A.L. Optimization in Cardiovascular Modeling. Annu. Rev. Fluid Mech. 2014, 46, 519–546. [Google Scholar] [CrossRef]
- Moulton, M.J.; Creswell, L.L.; Actis, R.L.; Myers, K.W.; Vannier, M.W.; Szabo, B.A.; Pasque, M.K. An inverse approach to determining myocardial material properties. J. Biomech. 1995, 28, 935–948. [Google Scholar] [CrossRef]
- Palit, A.; Bhudia, S.; Arvanitis, T.; Turley, G.; Williams, M. In vivo estimation of passive biomechanical properties of human myocardium. Med. Biol. Eng. Comput. 2018, 56, 1615–1631. [Google Scholar] [CrossRef] [Green Version]
- Klotz, S.; Hay, I.; Dickstein, M.L.; Yi, G.-H.; Wang, J.; Maurer, M.S.; Kass, D.A.; Burkhoff, D. Single-beat estimation of end-diastolic pressure-volume relationship: A novel method with potential for noninvasive application. Am. J. Physiol. Circ. Physiol. 2006, 291, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Genet, M.; Lee, L.C.; Nguyen, R.; Haraldsson, H.; Acevedo-Bolton, G.; Zhang, Z.; Ge, L.; Ordovas, K.; Kozerke, S.; Guccione, J.M. Distribution of normal human left ventricular myofiber stress at end diastole and end systole: A target for in silico design of heart failure treatments. J. Appl. Physiol. 2014, 117, 142–152. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, X.; Raghavan, M.L. Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms. J. Biomech. 2007, 40, 693–696. [Google Scholar] [CrossRef]
- Farzaneh, S.; Trabelsi, O.; Avril, S. Inverse identification of local stiffness across ascending thoracic aortic aneurysms. Biomech. Model. Mechanobiol. 2019, 18, 137–153. [Google Scholar] [CrossRef]
- Liu, M.; Liang, L.; Sun, W. Estimation of in vivo mechanical properties of the aortic wall: A multi-resolution direct search approach. J. Mech. Behav. Biomed. Mater. 2018, 77, 649–659. [Google Scholar] [CrossRef]
- Franquet, A.; Avril, S.; Le Riche, R.; Badel, P.; Schneider, F.C.; Li, Z.Y.; Boissier, C.; Favre, J.P. A New Method for the In Vivo Identification of Mechanical Properties in Arteries from Cine MRI Images: Theoretical Framework and Validation. IEEE Trans. Med. Imaging 2013, 32, 1448–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittek, A.; Karatolios, K.; Bihari, P.; Schmitz-Rixen, T.; Moosdorf, R.; Vogt, S.; Blase, C. In vivo determination of elastic properties of the human aorta based on 4D ultrasound data. J. Mech. Behav. Biomed. Mater. 2013, 27, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Candito, A.; Palacio-Torralba, J.; Jiménez-Aguilar, E.; Good, D.W.; McNeill, A.; Reuben, R.L.; Chen, Y. Identification of tumor nodule in soft tissue: An inverse finite-element framework based on mechanical characterization. Int. J. Numer. Methods Biomed. Eng. 2020, 36, e3369. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Mukherjee, S.; Karthikeyan, B. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods. Biomech. Model. Mechanobiol. 2008, 8, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Romarowski, R.M.; Lefieux, A.; Morganti, S.; Veneziani, A.; Auricchio, F. Patient-specific CFD modelling in the thoracic aorta with PC-MRI–based boundary conditions: A least-square three-element Windkessel approach. Int. J. Numer. Methods Biomed. Eng. 2018, 34, e3134. [Google Scholar] [CrossRef] [PubMed]
- Quick, C.M.; Young, W.L.; Noordergraaf, A. Infinite number of solutions to the hemodynamic inverse problem. Am. J. Physiol. Circ. Physiol. 2001, 280, H1472–H1479. [Google Scholar] [CrossRef] [PubMed]
- Pewowaruk, R.; Roldán-Alzate, A. 4D Flow MRI Estimation of Boundary Conditions for Patient Specific Cardiovascular Simulation. Ann. Biomed. Eng. 2019, 47, 1786–1798. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-H.; Chung, H.-W.; Yu, H.-Y.; Tseng, W.-Y.I. Estimation of pulse wave velocity in main pulmonary artery with phase contrast MRI: Preliminary investigation. J. Magn. Reson. Imaging 2006, 24, 1303–1310. [Google Scholar] [CrossRef]
- Töger, J.; Zahr, M.J.; Aristokleous, N.; Bloch, K.M.; Carlsson, M.; Persson, P.-O. Blood flow imaging by optimal matching of computational fluid dynamics to 4D-flow data. Magn. Reson. Med. 2020, 84, 2231–2245. [Google Scholar] [CrossRef] [Green Version]
- Kochenderfer, M.J.; Wheeler, T.A. Algorithms for Optimization; The MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Peña, J.A.; Corral, V.; Martínez, M.A.; Peña, E. Over length quantification of the multiaxial mechanical properties of the ascending, descending and abdominal aorta using Digital Image Correlation. J. Mech. Behav. Biomed. Mater. 2018, 77, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Wittek, A.; Derwich, W.; Karatolios, K.; Fritzen, C.P.; Vogt, S.; Schmitz-Rixen, T.; Blase, C. A finite element updating approach for identification of the anisotropic hyperelastic properties of normal and diseased aortic walls from 4D ultrasound strain imaging. J. Mech. Behav. Biomed. Mater. 2016, 58, 122–138. [Google Scholar] [CrossRef]
- Khalil, A.S.; Bouma, B.E.; Mofrad, M.R.K. A Combined FEM/Genetic Algorithm for Vascular Soft Tissue Elasticity Estimation. Cardiovasc. Eng. 2006, 6, 93–102. [Google Scholar] [CrossRef]
- Aboelkassem, Y.; Savic, D. Particle swarm optimizer for arterial blood flow models. Comput. Methods Progr. Biomed. 2021, 201, 105933. [Google Scholar] [CrossRef]
- Carniel, T.A.; de Castro, P.B.; Santos, A.L.G.; Roesler, C.R.d.M.; Breitenbach, E.R.; Salmoria, G.V.; Morozo, M.A.; Colaço, P.A.; Fiori, M.A.; Fancello, E.A. Mechanical characterization of hydrolysis effects on the stiffness of bioabsorbable polymeric filaments: An experimental and modeling approach based on a simple constitutive damage model. Polym. Polym. Compos. 2021, 29, S262–S273. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Bang, H. Introduction to Kalman Filter and Its Applications. In Introduction and Implementations of the Kalman Filter; Govaers, F., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Alexanderian, A. Optimal experimental design for infinite-dimensional Bayesian inverse problems governed by PDEs: A review. Inverse Probl. 2021, 37, 043001. [Google Scholar] [CrossRef]
- Ferruzzi, J.; Di Achille, P.; Tellides, G.; Humphrey, J.D. Combining in vivo and in vitro biomechanical data reveals key roles of perivascular tethering in central artery function. PLoS ONE 2018, 13, e0201379. [Google Scholar] [CrossRef]
- Sun, W.; Sacks, M.S. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 2005, 4, 190–199. [Google Scholar] [CrossRef]
- Avazmohammadi, R.; Soares, J.S.; Li, D.S.; Eperjesi, T.; Pilla, J.; Gorman, R.C.; Sacks, M.S. On the in vivo systolic compressibility of left ventricular free wall myocardium in the normal and infarcted heart. J. Biomech. 2020, 107, 109767. [Google Scholar] [CrossRef]
- Rodriguez, I.; Ennis, D.B.; Wen, H. Noninvasive measurement of myocardial tissue volume change during systolic contraction and diastolic relaxation in the canine left ventricle. Magn. Reson. Med. 2006, 55, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Spottiswoode, B.S.; Meyer, C.H.; Kramer, C.M.; Epstein, F.H. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn. Reson. Med. 2010, 64, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Soares, J.S.; Walmsley, J.; Li, D.S.; Raut, S.; Avazmohammadi, R.; Iaizzo, P.; Palmer, M.; Gorman, J.H.; Gorman, R.C.; et al. The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Girerd, X.J.; Acar, C.; Mourad, J.J.; Boutouyrie, P.; Safar, M.E.; Laurent, S. Incompressibility of the human arterial wall: An in vitro ultrasound study. J. Hypertens. Suppl. 1992, 10, S111–S114. [Google Scholar] [CrossRef] [PubMed]
- Nolan, D.; McGarry, J.P. On the Compressibility of Arterial Tissue. Ann. Biomed. Eng. 2015, 44, 993–1007. [Google Scholar] [CrossRef]
- Liu, J.; Yang, W.; Lan, I.S.; Marsden, A.L. Fluid-structure interaction modeling of blood flow in the pulmonary arteries using the unified continuum and variational multiscale formulation. Mech. Res. Commun. 2020, 107, 103556. [Google Scholar] [CrossRef]
- Balaban, G.; Finsberg, H.; Funke, S.; Håland, T.F.; Hopp, E.; Sundnes, J.; Wall, S.; Rognes, M.E. In vivo estimation of elastic heterogeneity in an infarcted human heart. Biomech. Model. Mechanobiol. 2018, 17, 1317–1329. [Google Scholar] [CrossRef] [Green Version]
- Wohlfahrt, P.; Krajčoviechová, A.; Seidlerová, J.; Mayer, O.; Bruthans, J.; Filipovský, J.; Laurent, S.; Cífková, R. Arterial stiffness parameters: How do they differ? Atherosclerosis 2013, 231, 359–364. [Google Scholar] [CrossRef]
- Vitarelli, A.; Conde, Y.; Cimino, E.; D’Angeli, I.; D’Orazio, S.; Stellato, S.; Padella, V.; Caranci, F. Aortic Wall Mechanics in the Marfan Syndrome Assessed by Transesophageal Tissue Doppler Echocardiography. Am. J. Cardiol. 2006, 97, 571–577. [Google Scholar] [CrossRef]
- Mack, W.J.; Islam, T.; Lee, Z.; Selzer, R.H.; Hodis, H.N. Environmental tobacco smoke and carotid arterial stiffness. Prev. Med. 2003, 37, 148–154. [Google Scholar] [CrossRef]
- Azadani, A.N.; Chitsaz, S.; Matthews, P.B.; Jaussaud, N.; Leung, J.; Tsinman, T.; Ge, L.; Tseng, E.E. Comparison of Mechanical Properties of Human Ascending Aorta and Aortic Sinuses. Ann. Thorac. Surg. 2012, 93, 87–94. [Google Scholar] [CrossRef]
- Genovese, K.; Humphrey, J.D. Multimodal optical measurementin vitroof surface deformations and wall thickness of the pressurized aortic arch. J. Biomed. Opt. 2015, 20, 046005. [Google Scholar] [CrossRef]
- Abbasi, M.; Barakat, M.S.; Vahidkhah, K.; Azadani, A.N. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J. Mech. Behav. Biomed. Mater. 2016, 62, 33–44. [Google Scholar] [CrossRef]
- Hess, A.T.; Bissell, M.M.; Ntusi, N.A.B.; Lewis, A.J.M.; Tunnicliffe, E.M.; Greiser, A.; Stalder, A.F.; Francis, J.M.; Myerson, S.G.; Neubauer, S.; et al. Aortic 4D flow: Quantification of signal-to-noise ratio as a function of field strength and contrast enhancement for 1.5 T, 3 T, and 7 T. Magn. Reson. Med. 2015, 73, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
- Aletras, A.H.; Ding, S.; Balaban, R.S.; Wen, H. DENSE: Displacement Encoding with Stimulated Echoes in Cardiac Functional MRI. J. Magn. Reson. 1999, 137, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Bracamonte, J.H.; Wilson, J.S.; Soares, J.S. Quantification of the heterogeneous effect of static and dynamic perivascular struc-tures on patient-specific local aortic wall mechanics using inverse finite element modeling and DENSE MRI. J. Biomech. 2009, 11, 123. [Google Scholar]
- Busch, J.; Giese, D.; Kozerke, S. Image-based background phase error correction in 4D flow MRI revisited. J. Magn. Reson. Imaging 2017, 46, 1516–1525. [Google Scholar] [CrossRef]
- Ng, A.; Swanevelder, J. Resolution in ultrasound imaging. Contin. Educ. Anaesth. Crit. Care Pain 2011, 11, 186–192. [Google Scholar] [CrossRef]
- Sassaroli, E.; Crake, C.; Scorza, A.; Kim, D.; Park, M. Image quality evaluation of ultrasound imaging systems: Advanced B-modes. J. Appl. Clin. Med. Phys. 2019, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Linte, C.A.; Moore, J.; Wiles, A.D.; Wedlake, C.; Peters, T.M. Virtual reality-enhanced ultrasound guidance: A novel technique for intracardiac interventions. Comput. Aided Surg. 2008, 13, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Olson, I.; Brabender, J.; Thorson, K.; Lopez, L. 3D Echocardiography. In Multimodality Imaging Innovations in Adult Congenital Heart Disease; Springer Nature: Berlin, Germany, 2021; pp. 3–25. [Google Scholar]
- Malik, S.B.; Chen, N.; Parker, R.A.; Hsu, J.Y. Transthoracic Echocardiography: Pitfalls and Limitations as Delineated at Cardiac CT and MR Imaging. RadioGraphics 2017, 37, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, J.; Finet, G.; Le Floc’H, S.; Cloutier, G.; Gharib, A.; Heroux, J.; Pettigrew, R.I. Biomechanics of Atherosclerotic Coronary Plaque: Site, Stability and In Vivo Elasticity Modeling. Ann. Biomed. Eng. 2014, 42, 269–279. [Google Scholar] [CrossRef]
- Ko, S.M.; Hwang, S.H.; Lee, H.-J. Role of Cardiac Computed Tomography in the Diagnosis of Left Ventricular Myocardial Diseases. J. Cardiovasc. Imaging 2019, 27, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Dunmire, B.; Beach, K.W.; Labs, K.H.; Plett, M.; Strandness, D.E. Cross-beam vector Doppler ultrasound for angle-independent velocity measurements. Ultrasound Med. Biol. 2000, 26, 1213–1235. [Google Scholar] [CrossRef]
- Truong, U.T.; Kutty, S.; Broberg, C.S.; Sahn, D.J. Multimodality Imaging in Congenital Heart Disease: An Update. Curr. Cardiovasc. Imaging Rep. 2012, 5, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Z.; Xu, X.Y.; Hughes, A.D.; Thom, S.A.; Stanton, A.V.; Ariff, B.; Long, Q. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 2000, 33, 975–984. [Google Scholar] [CrossRef]
- Bracamonte-Baran, W.; Bracamonte-Baran, J.; Baritto-Loreto, M.; D’Alessandro-Martínez, A. Computational Fluid Dynamics applied to the study of blood flow in the human aortic arch and its main branches. Ing. Investig. Tecnol. 2016, 17, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Mondillo, S.; Galderisi, M.; Mele, D.; Cameli, M.; Lomoriello, V.S.; Zacà, V.; Ballo, P.; D’Andrea, A.; Muraru, D.; Losi, M.; et al. Speckle-Tracking Echocardiography. J. Ultrasound Med. 2011, 30, 71–83. [Google Scholar] [CrossRef]
- Karatolios, K.; Wittek, A.; Nwe, T.H.; Bihari, P.; Shelke, A.; Josef, D.; Schmitz-Rixen, T.; Geks, J.; Maisch, B.; Blase, C.; et al. Method for Aortic Wall Strain Measurement with Three-Dimensional Ultrasound Speckle Tracking and Fitted Finite Element Analysis. Ann. Thorac. Surg. 2013, 96, 1664–1671. [Google Scholar] [CrossRef]
- Bihari, P.; Shelke, A.; Nwe, T.; Mularczyk, M.; Nelson, K.; Schmandra, T.; Knez, P.; Schmitz-Rixen, T. Strain Measurement of Abdominal Aortic Aneurysm with Real-time 3D Ultrasound Speckle Tracking. Eur. J. Vasc. Endovasc. Surg. 2013, 45, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Petterson, N.J.; van Disseldorp, M.R.H.M.; van Sambeek, F.R.; van de Vosse, F.N.; Lopata, R.G.P. Including surrounding tissue improves ultrasound-based 3D mechanical characterization of abdominal aortic aneurysms. J. Biomech. 2019, 85, 126–133. [Google Scholar] [CrossRef]
- Cho, G.-Y.; Chan, J.; Leano, R.; Strudwick, M.; Marwick, T.H. Comparison of Two-Dimensional Speckle and Tissue Velocity Based Strain and Validation with Harmonic Phase Magnetic Resonance Imaging. Am. J. Cardiol. 2006, 97, 1661–1666. [Google Scholar] [CrossRef]
- Pedrizzetti, G.; Claus, P.; Kilner, P.J.; Nagel, E. Principles of cardiovascular magnetic resonance feature tracking and echocardiographic speckle tracking for informed clinical use. J. Cardiovasc. Magn. Reson. 2016, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, A.M.; Adar, A.; Ghelani, S.J.; Sleeper, L.A.; Levy, P.T.; Rathod, R.H.; Marx, G.R.; Harrild, D.M. Speckle tracking echo-cardiographically-based analysis of ventricular strain in children: An intervendor comparison. Cardiovasc. Ultrasound 2020, 18, 1–12. [Google Scholar] [CrossRef]
- Jeung, M.-Y.; Germain, P.; Croisille, P.; El Ghannudi, S.; Roy, C.; Gangi, A. Myocardial Tagging with MR Imaging: Overview of Normal and Pathologic Findings. RadioGraphics 2012, 32, 1381–1398. [Google Scholar] [CrossRef]
- Wehner, G.J.; Suever, J.D.; Haggerty, C.M.; Jing, L.; Powell, D.K.; Hamlet, S.M.; Grabau, J.D.; Mojsejenko, W.D.; Zhong, X.; Epstein, F.H.; et al. Validation of in vivo 2D displacements from spiral cine DENSE at 3 T. J. Cardiovasc. Magn. Reson. 2015, 17, 5. [Google Scholar] [CrossRef] [Green Version]
- Campbell-Washburn, A.E.; Tavallaei, M.A.; Pop, M.; Grant, E.K.; Chubb, H.; Rhode, K.; Wright, G.A. Real-time MRI guidance of cardiac interventions. J. Magn. Reson. Imaging 2017, 46, 935–950. [Google Scholar] [CrossRef]
- Pop, M.; Ghugre, N.R.; Ramanan, V.; Morikawa, L.; Stanisz, G.; Dick, A.J.; Wright, G.A. Quantification of fibrosis in infarcted swine hearts byex vivolate gadolinium-enhancement and diffusion-weighted MRI methods. Phys. Med. Biol. 2013, 58, 5009–5028. [Google Scholar] [CrossRef]
- Dall’Armellina, E.; Bissell, M.M.; Broadbent, D.A.; Plein, S. MRI T1 Mapping: Myocardial Fibrosis. In Multimodality Imaging Innovations in Adult Congenital Heart Disease; Springer Nature: Berlin, Germany, 2021; pp. 49–61. [Google Scholar]
- Edelman, R.R. The History of MR Imaging as Seen through the Pages of Radiology. Radiology 2014, 273, S181–S200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerhouni, E.A.; Parish, D.M.; Rogers, W.J.; Yang, A.; Shapiro, E.P. Human heart: Tagging with MR imaging—A method for noninvasive assessment of myocardial motion. Radiology 1988, 169, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Kramer, C.M. Role of Cardiac MR Imaging in Cardiomyopathies. J. Nucl. Med. 2015, 56, 39S–45S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, E.-S.H.; Arpinar, V.E.; Muftuler, L.T.; Stojanovska, J.; Nencka, A.S.; Koch, K.M. Cardiac functional magnetic resonance imaging at 7 T: Image quality optimization and ultra-high field capabilities. World J. Radiol. 2020, 12, 231–246. [Google Scholar] [CrossRef]
- Li, L.; Miller, K.L.; Jezzard, P. DANTE-prepared pulse trains: A novel approach to motion-sensitized and motion-suppressed quantitative magnetic resonance imaging. Magn. Reson. Med. 2012, 68, 1423–1438. [Google Scholar] [CrossRef]
- Qian, Z.; Metaxas, D.; Axel, L. Non-tracking-based 2d strain estimation in tagged MRI. In Proceedings of the 2008 5th IEEE Internaional Symposium of Biomedicinal Imaging from Nano to Macro, Paris, France, 14–17 May 2008; pp. 528–531. [Google Scholar] [CrossRef]
- Kar, J.; Knutsen, A.K.; Cupps, B.P.; Pasque, M.K. A Validation of Two-Dimensional In Vivo Regional Strain Computed from Displacement Encoding with Stimulated Echoes (DENSE), in Reference to Tagged Magnetic Resonance Imaging and Studies in Repeatability. Ann. Biomed. Eng. 2014, 42, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Axel, L. Biomechanical Dynamics of the Heart with MRI. Annu. Rev. Biomed. Eng. 2002, 4, 321–347. [Google Scholar] [CrossRef]
- Wymer, D.T.; Patel, K.P.; Burke, W.F.; Bhatia, V.K. Phase-Contrast MRI: Physics, Techniques, and Clinical Applications. RadioGraphics 2020, 40, 122–140. [Google Scholar] [CrossRef]
- Lorenz, R.; Bock, J.; Snyder, J.; Korvink, J.G.; Jung, B.A.; Markl, M. Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data. Magn. Reson. Med. 2014, 72, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Gatehouse, P.D.; Rolf, M.P.; Graves, M.J.; Hofman, M.B.; Totman, J.; Werner, B.; Quest, R.A.; Liu, Y.; von Spiczak, J.; Dieringer, M.; et al. Flow measurement by cardiovascular magnetic resonance: A multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J. Cardiovasc. Magn. Reson. 2010, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Stalder, A.F.; Russe, M.F.; Frydrychowicz, A.; Bock, J.; Hennig, J.; Markl, M. Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 2008, 60, 1218–1231. [Google Scholar] [CrossRef]
- Minderhoud, S.C.S.; Van Der Velde, N.; Wentzel, J.J.; Van Der Geest, R.J.; Attrach, M.; Wielopolski, P.A.; Budde, R.P.J.; Helbing, W.A.; Roos-Hesselink, J.W.; Hirsch, A. The clinical impact of phase offset errors and different correction methods in cardiovascular magnetic resonance phase contrast imaging: A multi-scanner study. J. Cardiovasc. Magn. Reson. 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Sieren, M.M.; Berlin, C.; Oechtering, T.H.; Hunold, P.; Drömann, D.; Barkhausen, J.; Frydrychowicz, A. Comparison of 4D Flow MRI to 2D Flow MRI in the pulmonary arteries in healthy volunteers and patients with pulmonary hypertension. PLoS ONE 2019, 14, e0224121. [Google Scholar] [CrossRef] [Green Version]
- Bollache, E.; van Ooij, P.; Powell, A.; Carr, J.; Markl, M.; Barker, A.J. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int. J. Cardiovasc. Imaging 2016, 32, 1529–1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stankovic, Z.; Allen, B.D.; Garcia, J.; Jarvis, K.B.; Markl, M. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 2014, 4, 173–192. [Google Scholar] [CrossRef] [PubMed]
- Middione, M.J.; Wu, H.H.; Ennis, D.B. Convex gradient optimization for increased spatiotemporal resolution and improved accuracy in phase contrast MRI. Magn. Reson. Med. 2013, 72, 1552–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantz, J.; Gupta, V.; Henriksson, L.; Karlsson, M.; Persson, A.; Carlhäll, C.-J.; Ebbers, T. Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI. Radiology 2018, 289, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Markl, M.; Wallis, W.; Brendecke, S.; Simon, J.; Frydrychowicz, A.; Harloff, A. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn. Reson. Med. 2010, 63, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.J.; Roldán-Alzate, A.; Entezari, P.; Shah, S.J.; Chesler, N.; Wieben, O.; Markl, M.; Francois, C.J. Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: Results from two institutions. Magn. Reson. Med. 2015, 73, 1904–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäfer, M.; Ivy, D.D.; Abman, S.H.; Stenmark, K.; Browne, L.P.; Barker, A.J.; Mitchell, M.B.; Morgan, G.J.; Wilson, N.; Shah, A.; et al. Differences in pulmonary arterial flow hemodynamics between children and adults with pulmonary arterial hypertension as assessed by 4D-flow CMR studies. Am. J. Physiol. Circ. Physiol. 2019, 316, H1091–H1104. [Google Scholar] [CrossRef]
- Friesen, R.M.; Schäfer, M.; Ivy, D.D.; Abman, S.H.; Stenmark, K.; Browne, L.P.; Barker, A.J.; Hunter, K.S.; Truong, U. Proximal pulmonary vascular stiffness as a prognostic factor in children with pulmonary arterial hypertension. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 209–217. [Google Scholar] [CrossRef]
- Schäfer, M.; Frank, B.S.; Ivy, D.D.; Abman, S.H.; Stenmark, K.R.; Mitchell, M.B.; Browne, L.P.; Barker, A.J.; Hunter, K.S.; Kheyfets, V.; et al. Short-Term Effects of Inhaled Nitric Oxide on Right Ventricular Flow Hemodynamics by 4-Dimensional–Flow Magnetic Resonance Imaging in Children with Pulmonary Arterial Hypertension. J. Am. Heart Assoc. 2021, 10, 20548. [Google Scholar] [CrossRef]
- Jarvis, K.; Schnell, S.; Barker, A.J.; Rose, M.; Robinson, J.D.; Rigsby, C.K.; Markl, M. Caval to pulmonary 3D flow distribution in patients with Fontan circulation and impact of potential 4D flow MRI error sources. Magn. Reson. Med. 2019, 81, 1205–1218. [Google Scholar] [CrossRef]
- McLennan, D.; Schäfer, M.; Mitchell, M.B.; Morgan, G.J.; Ivy, D.; Barker, A.J.; Jacobsen, R. Usefulness of 4D-Flow MRI in Mapping Flow Distribution Through Failing Fontan Circulation Prior to Cardiac Intervention. Pediatr. Cardiol. 2019, 40, 1093–1096. [Google Scholar] [CrossRef]
- Cheng, A.L.; Wee, C.P.; Pahlevan, N.M.; Wood, J.C. A 4D flow MRI evaluation of the impact of shear-dependent fluid viscosity on in vitro Fontan circulation flow. Am. J. Physiol. Circ. Physiol. 2019, 317, H1243–H1253. [Google Scholar] [CrossRef]
- Schäfer, M.; Barker, A.J.; Jaggers, J.; Morgan, G.J.; Stone, M.L.; Truong, U.; Browne, L.P.; Malone, L.; Ivy, D.D.; Mitchell, M.B. Abnormal aortic flow conduction is associated with increased viscous energy loss in patients with repaired tetralogy of Fallot. Eur. J. Cardio-Thorac. Surg. 2020, 57, 588–595. [Google Scholar] [CrossRef]
- Kim, D.; Gilson, W.D.; Kramer, C.M.; Epstein, F.H. Myocardial Tissue Tracking with Two-Dimensional Cine Displacement-Encoded MR Imaging: Development and Initial Evaluation. Radiology 2004, 230, 862–871. [Google Scholar] [CrossRef]
- Aletras, A.H.; Wen, H. Mixed echo train acquisition displacement encoding with stimulated echoes: An optimized DENSE method for in vivo functional imaging of the human heart. Magn. Reson. Med. 2001, 46, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Perotti, L.E.; Magrath, P.; Verzhbinsky, I.A.; Aliotta, E.; Moulin, K.; Ennis, D.B. Microstructurally Anchored Cardiac Kinematics by Combining In Vivo DENSE MRI and cDTI. Lect. Notes Comput. Sci. 2017, 10263, 381–391. [Google Scholar] [CrossRef]
- Abdi, M.; Feng, X.; Sun, C.; Bilchick, K.C.; Meyer, C.H.; Epstein, F.H. Suppression of artifact-generating echoes in cine DENSE using deep learning. Magn. Reson. Med. 2021, 86, 2095–2104. [Google Scholar] [CrossRef]
- Cai, X.; Frederick, H.; Epstein, F.H. Free-breathing cine DENSE MRI using phase cycling with matchmaking and stimulated-echo image-based navigators. Magn. Reson. Med. 2018, 80, 1907–1921. [Google Scholar] [CrossRef]
- Ghadimi, S.; Auger, D.A.; Feng, X.; Sun, C.; Meyer, C.H.; Bilchick, K.C.; Cao, J.J.; Scott, A.D.; Oshinski, J.N.; Ennis, D.B.; et al. Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. J. Cardiovasc. Magn. Reson. 2021, 23, 1–13. [Google Scholar] [CrossRef]
- Magrath, P.; Maforo, N.; Renella, P.; Nelson, S.F.; Halnon, N.; Ennis, D.B. Cardiac MRI biomarkers for Duchenne muscular dystrophy. Biomarkers Med. 2018, 12, 1271–1289. [Google Scholar] [CrossRef]
- Naresh, N.K.; Misener, S.; Zhang, Z.; Yang, C.; Ruh, A.; Bertolino, N.; Epstein, F.H.; Collins, J.D.; Markl, M.; Procissi, D.; et al. Cardiac MRI Myocardial Functional and Tissue Characterization Detects Early Cardiac Dysfunction in a Mouse Model of Chemotherapy-Induced Cardiotoxicity. NMR Biomed. 2020, 33, e4327. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Abdi, M.; Auger, D.A.; Sun, C.; Hanson, C.A.; Robinson, A.A.; Schumann, C.; Oomen, P.J.; Ratcliffe, S.; Malhotra, R.; et al. Cardiac Magnetic Resonance Assessment of Response to Cardiac Resynchronization Therapy and Programming Strategies. JACC Cardiovasc. Imaging 2021, 14, 2369–2383. [Google Scholar] [CrossRef] [PubMed]
- Bilchick, K.C.; Auger, D.A.; Abdishektaei, M.; Mathew, R.; Sohn, M.-W.; Cai, X.; Sun, C.; Narayan, A.; Malhotra, R.; Darby, A.; et al. CMR DENSE and the Seattle Heart Failure Model Inform Survival and Arrhythmia Risk after CRT. JACC Cardiovasc. Imaging 2019, 13, 924–936. [Google Scholar] [CrossRef] [PubMed]
- Mangion, K.; Loughrey, C.M.; Auger, D.A.; McComb, C.; Lee, M.M.; Corcoran, D.; McEntegart, M.; Davie, A.; Good, R.; Lindsay, M.; et al. Displacement Encoding with Stimulated Echoes Enables the Identification of Infarct Transmurality Early Postmyocardial Infarction. J. Magn. Reson. Imaging 2020, 52, 1722–1731. [Google Scholar] [CrossRef]
- Iffrig, E.; Wilson, J.S.; Zhong, X.; Oshinski, J.N. Demonstration of circumferential heterogeneity in displacement and strain in the abdominal aortic wall by spiral cine DENSE MRI. J. Magn. Reson. Imaging 2019, 49, 731–743. [Google Scholar] [CrossRef]
- Haraldsson, H.; Hope, M.; Acevedo-Bolton, G.; Tseng, E.; Zhong, X.; Epstein, F.H.; Ge, L.; Saloner, D. Feasibility of asymmetric stretch assessment in the ascending aortic wall with DENSE cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2014, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.S.; Islam, M.; Oshinski, J.N. In Vitro Validation of Regional Circumferential Strain Assessment in a Phantom Aortic Model Using Cine Displacement Encoding with Stimulated Echoes MRI. J. Magn. Reson. Imaging 2021, 12, 27972. [Google Scholar] [CrossRef]
- Jones, P.A.; Wilson, J.S. The Potential for Quantifying Regional Distributions of Radial and Shear Strain in the Thoracic and Abdominal Aortic Wall Using Spiral Cine DENSE Magnetic Resonance Imaging. J. Biomech. Eng. 2021, 143. [Google Scholar] [CrossRef]
- Abderezaei, J.; Martinez, J.; Terem, I.; Fabris, G.; Pionteck, A.; Yang, Y.; Holdsworth, S.J.; Nael, K.; Kurt, M. Amplified Flow Imaging (aFlow): A Novel MRI-Based Tool to Unravel the Coupled Dynamics between the Human Brain and Cerebrovasculature. IEEE Trans. Med. Imaging 2020, 39, 4113–4123. [Google Scholar] [CrossRef]
- Kim, P.K.; Hong, Y.; Im, D.J.; Suh, Y.J.; Park, C.H.; Kim, J.Y.; Chang, S.; Lee, H.J.; Hur, J.; Kim, Y.J.; et al. Myocardial T1 and T2 Mapping: Techniques and Clinical Applications. Korean J. Radiol. 2017, 18, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Arai, A.E. Gadolinium Can Depict Area at Risk and Myocardial Infarction: A Double-Edged Sword? JACC Cardiovasc. Imaging 2011, 4, 619–621. [Google Scholar] [CrossRef] [Green Version]
- Sharedalal, P.; Gerard, P.; Jain, D. Pharmacological stress myocardial perfusion imaging after an inadequate exercise stress test. J. Nucl. Cardiol. 2021, 13, 6613. [Google Scholar] [CrossRef]
- Shehata, M.L.; Basha, T.A.; Hayeri, M.R.; Hartung, D.; Teytelboym, O.M.; Vogel-Claussen, J. MR Myocardial Perfusion Imaging: Insights on Techniques, Analysis, Interpretation, and Findings. RadioGraphics 2014, 34, 1636–1657. [Google Scholar] [CrossRef]
- Kwon, S.T.; Burek, W.; Dupay, A.C.; Farsad, M.; Baek, S.; Park, E.-A.; Lee, W. Interaction of expanding abdominal aortic aneurysm with surrounding tissue: Retrospective CT image studies. S. Pac. J. Nat. Appl. Sci. 2015, 1, e150. [Google Scholar]
- Kofler, J.M.; Cody, D.D.; Morin, R.L. CT Protocol Review and Optimization. J. Am. Coll. Radiol. 2014, 11, 267–270. [Google Scholar] [CrossRef]
- Bordones, A.D.; Leroux, M.; Kheyfets, V.O.; Wu, Y.-A.; Chen, C.-Y.; Finol, E.A. Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation. Ann. Biomed. Eng. 2018, 46, 1309–1324. [Google Scholar] [CrossRef]
- Krishnan, K.; Ge, L.; Haraldsson, H.; Hope, M.D.; Saloner, D.A.; Guccione, J.M.; Tseng, E.E. Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging. Interact. Cardiovasc. Thorac. Surg. 2015, 21, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Steinman, D.A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 2002, 30, 483–497. [Google Scholar] [CrossRef] [Green Version]
- Kheyfets, V.O.; Rios, L.; Smith, T.; Schroeder, T.; Mueller, J.; Murali, S.; Lasorda, D.; Zikos, A.; Spotti, J.; Reilly, J.J.; et al. Patient-specific computational modeling of blood flow in the pulmonary arterial circulation. Comput. Methods Progr. Biomed. 2015, 120, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Van Bakel, T.M.J.; Lau, K.D.; Hirsch-Romano, J.; Trimarchi, S.; Dorfman, A.L.; Figueroa, C.A. Patient-Specific Modeling of Hemodynamics: Supporting Surgical Planning in a Fontan Circulation Correction. J. Cardiovasc. Transl. Res. 2018, 11, 145–155. [Google Scholar] [CrossRef]
- Steinman, D.A. Image-based Computational Fluid Dynamics: A New Paradigm for Monitoring Hemodynamics and Atherosclerosis. Curr. Drug Target Cardiovasc. Hematol. Disord. 2004, 4, 183–197. [Google Scholar] [CrossRef]
- Walker, J.C.; Ratcliffe, M.B.; Zhang, P.; Wallace, A.W.; Fata, B.; Hsu, E.W.; Saloner, D.; Guccione, J.M. MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. Circ. Physiol. 2005, 289, H692–H700. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.C.; Ratcliffe, M.B.; Zhang, P.; Wallace, A.W.; Hsu, E.W.; Saloner, D.A.; Guccione, J.M. Magnetic resonance imaging-based finite element stress analysis after linear repair of left ventricular aneurysm. J. Thorac. Cardiovasc. Surg. 2008, 135, 1094–1102. [Google Scholar] [CrossRef] [Green Version]
- Maas, S.A.; Erdemir, A.; Halloran, J.P.; Weiss, J.A. A general framework for application of prestrain to computational models of biological materials. J. Mech. Behav. Biomed. Mater. 2016, 61, 499–510. [Google Scholar] [CrossRef]
- Nikou, A.; Dorsey, S.M.; McGarvey, J.R.; Gorman, J.H.; Burdick, J.A.; Pilla, J.J.; Gorman, R.C.; Wenk, J.F. Effects of using the unloaded configuration in predicting the in vivo diastolic properties of the heart. Comput. Methods Biomech. Biomed. Eng. 2016, 19, 1714–1720. [Google Scholar] [CrossRef] [Green Version]
- Bols, J.; Degroote, J.; Trachet, B.; Verhegghe, B.; Segers, P.; Vierendeels, J. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 2013, 246, 10–17. [Google Scholar] [CrossRef]
- Finsberg, H.; Balaban, G.; Ross, S.; Håland, T.F.; Odland, H.H.; Sundnes, J.; Wall, S. Estimating cardiac contraction through high resolution data assimilation of a personalized mechanical model. J. Comput. Sci. 2018, 24, 85–90. [Google Scholar] [CrossRef]
- Raghavan, M.L.; Trivedi, S.; Nagaraj, A.; McPherson, D.D.; Chandran, K.B. Three-dimensional finite element analysis of residual stress in arteries. Ann. Biomed. Eng. 2004, 32, 257–263. [Google Scholar] [CrossRef]
- Rajagopal, V.; Chung, J.-H.; Bullivant, D.; Nielsen, P.M.F.; Nash, M.P. Determining the finite elasticity reference state from a loaded configuration. Int. J. Numer. Methods Eng. 2007, 72, 1434–1451. [Google Scholar] [CrossRef]
- Riveros, F.; Chandra, S.; Finol, E.; Gasser, T.C.; Rodriguez, J.F. A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics. Ann. Biomed. Eng. 2013, 41, 694–708. [Google Scholar] [CrossRef]
- Rausch, M.K.; Kuhl, E. On the effect of prestrain and residual stress in thin biological membranes. J. Mech. Phys. Solids 2013, 61, 1955–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.; Paul, A.; Taylor, M.D.; Banerjee, R.K. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm. Biomed. Eng. Online 2015, 14, S18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Putter, S.; Wolters, B.; Rutten, M.; Breeuwer, M.; Gerritsen, F.; van de Vosse, F. Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J. Biomech. 2007, 40, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Gee, M.W.; Förster, C.; Wall, W.A. A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int. J. Numer. Methods Biomed. Eng. 2009, 26, 52–72. [Google Scholar] [CrossRef]
- Gee, M.W.; Reeps, C.; Eckstein, H.H.; Wall, W.A. Prestressing in finite deformation abdominal aortic aneurysm simulation. J. Biomech. 2009, 42, 1732–1739. [Google Scholar] [CrossRef]
- Genet, M.; Rausch, M.; Lee, L.C.; Choy, S.; Zhao, X.; Kassab, G.S.; Kozerke, S.; Guccione, J.M.; Kuhl, E. Heterogeneous growth-induced prestrain in the heart. J. Biomech. 2015, 48, 2080–2089. [Google Scholar] [CrossRef] [Green Version]
- Aguado-Sierra, J.; Krishnamurthy, A.; Villongco, C.; Chuang, J.; Howard, E.; Gonzales, M.J.; Omens, J.; Krummen, D.E.; Narayan, S.; Kerckhoffs, R.C.P.; et al. Patient-specific modeling of dyssynchronous heart failure: A case study. Prog. Biophys. Mol. Biol. 2011, 107, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Sermesant, M.; Moireau, P.; Camara, O.; Sainte-Marie, J.; Andriantsimiavona, R.; Cimrman, R.; Hill, D.L.G.; Chapelle, D.; Razavi, R. Cardiac function estimation from MRI using a heart model and data assimilation: Advances and difficulties. Med. Image Anal. 2006, 10, 642–656. [Google Scholar] [CrossRef]
- Rumindo, G.K.; Ohayon, J.; Croisille, P.; Clarysse, P. In vivo estimation of normal left ventricular stiffness and contractility based on routine cine MR acquisition. Med. Eng. Phys. 2020, 85, 16–26. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, V.Y.; Bradley, C.P.; Nash, M.P.; Young, A.A.; Cao, J.J. Left Ventricular Diastolic Myocardial Stiffness and End-Diastolic Myofibre Stress in Human Heart Failure Using Personalised Biomechanical Analysis. J. Cardiovasc. Transl. Res. 2018, 11, 346–356. [Google Scholar] [CrossRef]
- Finsberg, H.; Xi, C.; Zhao, X.; Le Tan, J.; Genet, M.; Sundnes, J.S.; Lee, L.C.; Zhong, L.; Wall, S.T. Computational quantification of patient-specific changes in ventricular dynamics associated with pulmonary hypertension. Am. J. Physiol. Circ. Physiol. 2019, 317, H1363–H1375. [Google Scholar] [CrossRef]
- Asner, L.; Hadjicharalambous, M.; Chabiniok, R.; Peresutti, D.; Sammut, E.; Wong, J.; Carr-White, G.; Chowienczyk, P.; Lee, J.; King, A.; et al. Estimation of passive and active properties in the human heart using 3D tagged MRI. Biomech. Model. Mechanobiol. 2015, 15, 1121–1139. [Google Scholar] [CrossRef]
- Asner, L.; Hadjicharalambous, M.; Chabiniok, R.; Peressutti, D.; Sammut, E.; Wong, J.; Carr-White, G.; Razavi, R.; King, A.P.; Smith, N.; et al. Patient-specific modeling for left ventricular mechanics using data-driven boundary energies. Comput. Methods Appl. Mech. Eng. 2016, 314, 269–295. [Google Scholar] [CrossRef]
- Nasopoulou, A.; Shetty, A.; Lee, J.; Nordsletten, D.; Rinaldi, C.; Lamata, P.; Niederer, S. Improved identifiability of myocardial material parameters by an energy-based cost function. Biomech. Model. Mechanobiol. 2017, 16, 971–988. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Aderhold, A.; Mangion, K.; Luo, X.; Husmeier, D.; Berry, C. Changes and classification in myocardial contractile function in the left ventricle following acute myocardial infarction. J. R. Soc. Interface 2017, 14, 20170203. [Google Scholar] [CrossRef] [Green Version]
- Marchesseau, S.; Delingette, H.; Sermesant, M.; Cabrera-Lozoya, R.; Tobon-Gomez, C.; Moireau, P.; Ventura, R.F.; Lekadir, K.; Hernandez, A.; Garreau, M.; et al. Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes. Med. Image Anal. 2013, 17, 816–829. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Lamata, P.; Lee, J.; Moireau, P.; Chapelle, D.; Smith, N. Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter. J. Mech. Behav. Biomed. Mater. 2011, 4, 1090–1102. [Google Scholar] [CrossRef]
- Xi, J.; Lamata, P.; Shi, W.; Niederer, S.; Land, S.; Rueckert, D.; Duckett, S.G.; Shetty, A.K.; Rinaldi, C.A.; Razavi, R.; et al. An Automatic Data Assimilation Framework for Patient-Specific Myocardial Mechanical Parameter Estimation. In Functional Imaging and Modeling of the Heart; Springer: Berlin/Heidelberg, Germany, 2011; pp. 392–400. [Google Scholar] [CrossRef]
- Hassaballah, A.I.; Hassan, M.A.; Mardi, A.N.; Hamdi, M. An Inverse Finite Element Method for Determining the Tissue Compressibility of Human Left Ventricular Wall during the Cardiac Cycle. PLoS ONE 2013, 8, e82703. [Google Scholar] [CrossRef]
- Helm, P.; Beg, M.F.; Miller, M.I.; Winslow, R.L. Measuring and Mapping Cardiac Fiber and Laminar Architecture Using Diffusion Tensor MR Imaging. Ann. N. Y. Acad. Sci. 2005, 1047, 296–307. [Google Scholar] [CrossRef]
- Usyk, T.P.; Mazhari, R.; McCulloch, A.D. Effect of Laminar Orthotropic Myofiber Architecture on Regional Stress and Strain in the Canine Left Ventricle. J. Elast. 2000, 61, 143–164. [Google Scholar] [CrossRef]
- Streeter, D.D.; Spotnitz, H.M.; Patel, D.P.; Ross, J.; Sonnenblick, E.H. Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circ. Res. 1969, 24, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, P.M.; Le Grice, I.J.; Smaill, B.H.; Hunter, P.J. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. Circ. Physiol. 1991, 260, H1365–H1378. [Google Scholar] [CrossRef]
- Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; Verani, M.S. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Misfeld, M.; Sievers, H.-H. Heart valve macro- and microstructure. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1421–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.-H.; Laurence, D.W.; Ross, C.J.; Kramer, K.E.; Babu, A.R.; Johnson, E.L.; Hsu, M.-C.; Aggarwal, A.; Mir, A.; Burkhart, H.M.; et al. Mechanics of the Tricuspid Valve—From Clinical Diagnosis/Treatment, In-Vivo and In-Vitro Investigations, to Patient-Specific Biomechanical Modeling. Bioengineering 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Votta, E.; Le, T.B.; Stevanella, M.; Fusini, L.; Caiani, E.G.; Redaelli, A.; Sotiropoulos, F. Toward patient-specific simulations of cardiac valves: State-of-the-art and future directions. J. Biomech. 2013, 46, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Rausch, M.K.; Famaey, N.; Shultz, T.O.; Bothe, W.; Miller, D.C.; Kuhl, E. Mechanics of the mitral valve. Biomech. Model. Mechanobiol. 2012, 12, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, A.; Sacks, M.S. An inverse modeling approach for semilunar heart valve leaflet mechanics: Exploitation of tissue structure. Biomech. Model. Mechanobiol. 2016, 15, 909–932. [Google Scholar] [CrossRef]
- Einstein, D.R.; Freed, A.D.; Stander, N.; Fata, B.; Vesely, I. Inverse Parameter Fitting of Biological Tissues: A Response Surface Approach. Ann. Biomed. Eng. 2005, 33, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Bark, D.L.; Dasi, L.P. The Impact of Fluid Inertia on In Vivo Estimation of Mitral Valve Leaflet Constitutive Properties and Mechanics. Ann. Biomed. Eng. 2015, 44, 1425–1435. [Google Scholar] [CrossRef] [Green Version]
- Goth, W.; Potter, S.; Allen, A.C.B.; Zoldan, J.; Sacks, M.S.; Tunnell, J.W. Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets. Ann. Biomed. Eng. 2019, 47, 1250–1264. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Amini, R.; Gorman, R.; Gorman, J.; Sacks, M. An inverse modeling approach for stress estimation in mitral valve anterior leaflet valvuloplasty for in-vivo valvular biomaterial assessment. J. Biomech. 2014, 47, 2055–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, J.-W.; Kim, S.M.; Park, S.-J.; Cho, E.J.; Kim, E.K.; Chang, S.-A.; Lee, S.-C.; Choe, Y.H.; Park, S.W. Assessment of reverse remodeling predicted by myocardial deformation on tissue tracking in patients with severe aortic stenosis: A cardiovascular magnetic resonance imaging study. J. Cardiovasc. Magn. Reson. 2017, 19, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, A.; Aguilar, V.S.; Lee, C.-H.; Ferrari, G.; Gorman, J.H.; Gorman, R.C.; Sacks, M.S. Patient-Specific Modeling of Heart Valves: From Image to Simulation. In Functional Imaging and Modeling of the Heart; Springer: Berlin/Heidelberg, Germany, 2013; pp. 141–149. [Google Scholar] [CrossRef]
- Abbasi, M.; Azadani, A.N. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 2015, 48, 3663–3671. [Google Scholar] [CrossRef]
- Krishnamurthy, G.; Ennis, D.B.; Itoh, A.; Bothe, W.; Swanson, J.C.; Karlsson, M.; Kuhl, E.; Miller, D.C.; Ingels, N.B. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am. J. Physiol. Circ. Physiol. 2008, 295, H1141–H1149. [Google Scholar] [CrossRef]
- Itoh, A.; Krishnamurthy, G.; Swanson, J.C.; Ennis, D.B.; Bothe, W.; Kuhl, E.; Karlsson, M.; Davis, L.R.; Miller, D.C.; Ingels, N.B. Active stiffening of mitral valve leaflets in the beating heart. Am. J. Physiol. Circ. Physiol. 2009, 296, H1766–H1773. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Zhang, W.; Feaver, K.; Gorman, R.C.; Gorman, J.H.; Sacks, M.S. On the in vivo function of the mitral heart valve leaflet: Insights into tissue–interstitial cell biomechanical coupling. Biomech. Model. Mechanobiol. 2017, 16, 1613–1632. [Google Scholar] [CrossRef]
- Aggarwal, A.; Pouch, A.M.; Lai, E.; Lesicko, J.; Yushkevich, P.A.; Gorman, J.H.; Gorman, R.C.; Sacks, M.S. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J. Biomech. 2016, 49, 2481–2490. [Google Scholar] [CrossRef] [Green Version]
- Aly, A.H.; Lai, E.K.; Yushkevich, N.; Stoffers, R.H.; Gorman, J.H.; Cheung, A.T.; Gorman, R.C.; Yushkevich, P.A.; Pouch, A.M. In Vivo Image-Based 4D Modeling of Competent and Regurgitant Mitral Valve Dynamics. Exp. Mech. 2020, 61, 159–169. [Google Scholar] [CrossRef]
- Bracamonte, J.; Wilson, J.S.; Soares, J.S. Modeling Patient-Specific Periaortic Interactions with Static and Dynamic Structures Using a Moving Heterogeneous Elastic Foundation Boundary Condition. In Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; pp. 315–327. [Google Scholar] [CrossRef]
- Di Giuseppe, M.; Farzaneh, S.; Zingales, M.; Pasta, S.; Avril, S. Patient-specific computational evaluation of stiffness distribution in ascending thoracic aortic aneurysm. J. Biomech. 2021, 119, 110321. [Google Scholar] [CrossRef]
- Van Disseldorp, E.M.J.; Petterson, N.J.; Rutten, M.C.M.; van de Vosse, F.N.; van Sambeek, M.R.H.M.; Lopata, R. Patient Specific Wall Stress Analysis and Mechanical Characterization of Abdominal Aortic Aneurysms Using 4D Ultrasound. Eur. J. Vasc. Endovasc. Surg. 2016, 52, 635–642. [Google Scholar] [CrossRef]
- Van Disseldorp, E.M.J.; Petterson, N.J.; Van De Vosse, F.N.; Van Sambeek, M.R.H.M.; Lopata, R.G.P. Quantification of aortic stiffness and wall stress in healthy volunteers and abdominal aortic aneurysm patients using time-resolved 3D ultrasound: A comparison study. Eur. Heart J.—Cardiovasc. Imaging 2019, 20, 185–191. [Google Scholar] [CrossRef]
- Talou, G.D.M.; Blanco, P.J.; Ares, G.D.; Bezerra, C.G.; Lemos, P.A.; Feijóo, R.A. Mechanical Characterization of the Vessel Wall by Data Assimilation of Intravascular Ultrasound Studies. Front. Physiol. 2018, 9, 292. [Google Scholar] [CrossRef]
- Wang, Q.; Canton, G.; Guo, J.; Guo, X.; Hatsukami, T.S.; Billiar, K.L.; Yuan, C.; Wu, Z.; Tang, D. MRI-based patient-specific human carotid atherosclerotic vessel material property variations in patients, vessel location and long-term follow up. PLoS ONE 2017, 12, e0180829. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Canton, G.; Yuan, C.; Yang, C.; Billiar, K.; Teng, Z.; Hoffman, A.H.; Tang, D. Using In Vivo Cine and 3D Multi-Contrast MRI to Determine Human Atherosclerotic Carotid Artery Material Properties and Circumferential Shrinkage Rate and Their Impact on Stress/Strain Predictions. J. Biomech. Eng. 2012, 134, 011008–0110089. [Google Scholar] [CrossRef]
- Masson, I.; Boutouyrie, P.; Laurent, S.; Humphrey, J.D.; Zidi, M. Characterization of arterial wall mechanical behavior and stresses from human clinical data. J. Biomech. 2008, 41, 2618–2627. [Google Scholar] [CrossRef] [Green Version]
- Taviani, V.; Sutcliffe, M.P.F.; Wong, P.; Li, Z.-Y.; Young, V.; Graves, M.J.; Gillard, J.H. In vivo non-invasive high resolution MR-based method for the determination of the elastic modulus of arterial vessels. IEEE Trans. Biomed. Eng. 2008, 55, 5569–5572. [Google Scholar] [CrossRef]
- Masson, I.; Fassot, C.; Zidi, M. Finite dynamic deformations of a hyperelastic, anisotropic, incompressible and prestressed tube. Applications to in vivo arteries. Eur. J. Mech. A Solids 2010, 29, 523–529. [Google Scholar] [CrossRef]
- Labrosse, M.R.; Gerson, E.R.; Veinot, J.P.; Beller, C.J. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress. J. Mech. Behav. Biomed. Mater. 2013, 17, 44–55. [Google Scholar] [CrossRef]
- Abdulameer, H.; Al Taii, H.; Al-Kindi, S.G.; Milner, R. Epidemiology of fatal ruptured aortic aneurysms in the United States (1999–2016). J. Vasc. Surg. 2019, 69, 378–384. [Google Scholar] [CrossRef] [Green Version]
- American Heart Association. Heart Disease and Stroke Statistics-2019 At-a-Glance Heart Disease, Stroke and Other Cardio-Vascular Diseases; American Heart Association: Dallas, TX, USA, 2019; Available online: https://professional.heart.org/es/science-news/-/media/22cf5db5b1a24b38a435fcecb42d588b.ashx (accessed on 27 November 2019).
- Saeyeldin, A.A.; Velasquez, C.A.; Mahmood, S.U.B.; Brownstein, A.J.; Zafar, M.; Ziganshin, B.A.; Elefteriades, J.A. Thoracic aortic aneurysm: Unlocking the “silent killer” secrets. Gen. Thorac. Cardiovasc. Surg. 2017, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Hu, M.; Shen, M.; Kassiri, Z. Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thubrikar, M.J.; Labrosse, M.; Robic, F. Mechanical properties of abdominal aortic aneurysm wall. J. Med. Eng. Technol. 2001, 25, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Yang, C.; Yuan, C.; Liu, F.; Canton, G.; Zheng, J.; Woodard, P.K.; Sicard, G.A.; Tang, D. Patient-Specific Artery Shrinkage and 3D Zero-Stress State in Multi-Component 3D FSI Models for Carotid Atherosclerotic Plaques Based on In Vivo MRI Data. Mol Cell Biomech. 2009, 6, 121–134. [Google Scholar]
- Quick, C.M.; Berger, D.S.; Stewart, R.H.; Laine, G.A.; Hartley, C.; Noordergraaf, A. Resolving the Hemodynamic Inverse Problem. IEEE Trans. Biomed. Eng. 2006, 53, 361–368. [Google Scholar] [CrossRef]
- Pant, S.; Corsini, C.; Baker, C.; Hsia, T.-Y.; Pennati, G.; Vignon-Clementel, I.E. Inverse problems in reduced order models of cardiovascular haemodynamics: Aspects of data assimilation and heart rate variability. J. R. Soc. Interface 2017, 14, 20160513. [Google Scholar] [CrossRef]
- Gaidzik, F.; Pathiraja, S.; Saalfeld, S.; Stucht, D.; Speck, O.; Thévenin, D.; Janiga, G. Hemodynamic Data Assimilation in a Subject-specific Circle of Willis Geometry. Clin. Neuroradiol. 2020, 31, 643–651. [Google Scholar] [CrossRef]
- Rispoli, V.C.; Nielsen, J.F.; Nayak, K.S.; Carvalho, J.L.A. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. Biomed. Eng. Online 2015, 14, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Moireau, P.; Chapelle, D. Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM Control. Optim. Calc. Var. 2011, 17, 380–405. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, M.; Mirabella, L.; Passerini, T.; Perego, M.; Piccinelli, M.; Vergara, C.; Veneziani, A. Applications of variational data assimilation in computational hemodynamics. Model. Simul. Appl. 2012, 363–394. [Google Scholar] [CrossRef] [Green Version]
- Perego, M.; Veneziani, A.; Vergara, C. A Variational Approach for Estimating the Compliance of the Cardiovascular Tissue: An Inverse Fluid-Structure Interaction Problem. SIAM J. Sci. Comput. 2011, 33, 1181–1211. [Google Scholar] [CrossRef]
- Bertoglio, C.; Barber, D.; Gaddum, N.; Valverde, I.; Rutten, M.; Beerbaum, P.; Moireau, P.; Hose, R.; Gerbeau, J.-F. Identification of artery wall stiffness: In vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid–structure interaction model. J. Biomech. 2014, 47, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, B.A.; McLean, N.A.; Zhao, X.; Tan, J.-L.; Zhong, L.; Figueroa, C.A.; Lee, L.C.; Baek, S. Image-based computational assessment of vascular wall mechanics and hemodynamics in pulmonary arterial hypertension patients. J. Biomech. 2018, 68, 84–92. [Google Scholar] [CrossRef]
- Zambrano, B.A.; McLean, N.; Zhao, X.; Tan, J.-L.; Zhong, L.; Figueroa, C.A.; Lee, L.C.; Baek, S. Patient-Specific Computational Analysis of Hemodynamics and Wall Mechanics and Their Interactions in Pulmonary Arterial Hypertension. Front. Bioeng. Biotechnol. 2020, 8, 1536. [Google Scholar] [CrossRef]
- Peirlinck, M.; Costabal, F.S.; Yao, J.; Guccione, J.M.; Tripathy, S.; Wang, Y.; Ozturk, D.; Segars, P.; Morrison, T.M.; Levine, S.; et al. Precision medicine in human heart modeling. Biomech. Model. Mechanobiol. 2021, 20, 803–831. [Google Scholar] [CrossRef]
- He, X.; Avril, S.; Lu, J. Prediction of local strength of ascending thoracic aortic aneurysms. J. Mech. Behav. Biomed. Mater. 2021, 115, 104284. [Google Scholar] [CrossRef]
Section | Highlights |
---|---|
2. | Inverse modeling of the cardiovascular system is usually grounded on classical continuum mechanics theory. The fundamental principles of mass and energy conservation are complemented by constitutive equations that describe the mechanical behavior of the material of interest. Constitutive material models can be either based on empirical evidence (phenomenological) or analytical expressions inspired by theory Once the model is defined through the selection of governing principles and constitutive equations, the problem is particularized by setting the domain of analysis and adequate boundary conditions. |
2.1 | Cardiovascular tissue is a complex multilayered structure that displays non-linear viscoelastic behavior, residual stress, and active contraction and distention. Structural mechanics of tissue is usually done with a Lagrangian formulation. The theory of finite hyperelasticity is applied to address the non-linear behavior and relatively large deformations. The adequate modeling of the passive behavior of cardiovascular tissue requires accounting for its structural anisotropy and the typical stiffening effect of strain/stretch. Active contraction and distention are the consequence of ion-based chemical signaling that triggers the contraction of actin-myosin sliding filaments, which determines the muscular tone. Active behavior is modeled by either adding an active stress or active strain components to the momentum balance. The additional active stress/strain is assumed to occur along myofiber directions and to depend on the cellular activation status. The geometrical distribution of the activation status can be determined by solving a reaction-diffusion problem. The patient-specific orientation of myofibers can be assessed by diffusion tensor MRI. However, the most common approach is to assume myofibers follow a standard orientation for which several models are available. |
2.2 | Blood is a suspension of cells in an aqueous solution of proteins and minerals that undergoes a pulsatile flow in vivo. Blood flow mechanics is typically studied with an Eulerian formulation. Assuming Newtonian fluid behavior and laminar flow are reasonable and typical approximations to model the blood flow in large vessels. Transition to turbulence flows may be relevant in the study of stenotic arteries. Phenomenological constitutive equations are available to model the shear-thinning effect on apparent viscosity. |
2.3 | The function of the cardiovascular system is the result of complex interactions between blood, the actively contractile cardiac tissue, and the compliant vascular walls. The interaction of blood flow and cardiovascular tissue requires specialized numerical formulations. There are several available formulations with different levels of complexity, one of which is the arbitrary Lagrangian–Eulerian algorithm which is complex and computationally expensive. |
2.4 | Living tissue has the capability to adapt in response to chemical and mechanical stimuli. The constrained mixture theory has been proposed to model the growth and remodeling of living tissue by solving sets of balance equations for each constituent of the tissue under study. The balance equations must be adequately constrained to account for the component-to-component interactions. The constrained mixture theory can introduce models to account for the reconfiguration of constituents under chemical/mechanical stimuli (remodeling). |
Section | Highlights |
---|---|
3. | Mechanical analyses of complex biological systems require the application of numerical methods to obtain approximate solutions. There are several numerical methods available to solve the governing principles of continuum mechanics, including popular mesh-based methods such as the finite volume method (FVM) and finite element method (FEM). Mesh-based methods discretize the domain of study on spaces of finite size and iteratively solve the governing equations on each finite space simultaneously. FVM is based on a “strong” formulation that solves exactly the balance equations on the center of each finite volume. FEM is based on a “weak” formulation that assumes the unknown variable to follow a prescribed shape function within each finite element. The method converges to the solution by minimizing the weighted error induced by the discretization and use of the shape functions. FVM and FEM offer equivalent solutions to a variety of Multiphysics problems. |
Section | Highlights |
---|---|
4. | Solving an inverse problem consists of using measured effects to estimate the causes. The main difficulties with inverse problems are the possible nonlinearity of the inverse mapping function, the multiplicity of solutions, and the sparsity and noise of the measured effect data. |
4.1 | The direct solution of inverse problems by the deduction of the inverse mapping function is only possible for simple cases. There are specialized mathematical solutions for specific problems of finite elasticity. Some relevant problems of inverse elasticity that have direct inverse solutions are (1) the solution of material properties from boundary loads and domain displacements. (2) The solution of the unloaded configuration from the applied loads, material properties and deformed configuration. Direct solutions of inverse problems are computationally efficient. However, direct solutions are not generalizable and require continuous smooth functions of the measured input often not compatible with noise and scarce experimental data. |
4.2 | Inverse problems can also be solved through an iterative weak approach. This consist of iteratively solving a forward simulation problem to minimize an error function between simulation outputs and target measurements while fitting the sets of unknowns. The iterative solution methods of inverse problems are generalizable, can handle noisy and scarce experimental target data, and can operate on top of existing simulation software. However, iterative methods are computationally expensive. The selection of the target function to be minimize needs to be consistent with the nature of the problem and the characteristics of the biomechanical model. The inverse method can be implemented though a variety of optimization methods. For the solutions of biomechanical inverse problems, optimization methods with no differentiation of the target function are preferred. Population-based optimization algorithms can solve global minima of multiparametric functions with an increased toll of computational expense. Statistic-based optimization method can incorporate previously reported data which can reduce convergence time and provide probability distributions of results rather than single deterministic values. Convergence times can be improved and solution multiplicity narrowed by the implementation of solution constraints. Constraints can be based on physical laws and limits or on previous experience. Constraints can also be implemented to promote numerical stability and smoothness of the converged solution. |
Section | Highlights |
---|---|
5. | Early assessments of in vivo stiffness of blood vessels relied on measurements of luminal area changes. However, the predictive capabilities of these factors are inconsistent among different arterial locations and pathologies. In vivo medical imaging has evolved to provide not only anatomical geometric information but also detailed kinematic measurements. The accuracy and availability of these techniques are limited by image resolution, signal-to-noise ratio (SNR), the occurrence of artifacts, and practical obstacles related to testing costs and health hazards. |
5.1 | Ultrasound (US) uses high-frequency (2 to 15 MHz) acoustic waves to create real-time in vivo images of tissues, organs, and blood pools using piezoelectric transducers with lateral resolution of 1 mm/pixel. US is relatively inexpensive, portable, and safe, so it has become a customary tool in many clinical applications. However, the accuracy and reproducibility of US-derived measurements are limited in comparison to MRI-based measurements. Blood flow velocity can be assessed with echo and vector doppler technology. Tissue displacement can be measured using speckle tracking technology, which consists of image tracking the acoustic response of tissue fibers to ultrasound signals. |
5.2 | Magnetic resonance imaging (MRI) offers superior quantitative utility compared to ultrasound as it can offer higher resolution and accuracy of measurements of anatomical features. MRI generally poses minimal hazard to patients unless they have implanted medical devices/objects or suffer from claustrophobia. However, the technique requires specialized equipment and trained staff, which limits availability compared to US. MRI-based techniques for assessment of tissue kinematics include tissue tagging and DENSE MRI. Tissue tagging is based on image tracking of magnetically induced markers, while DENSE MRI encodes the tissue displacement on the phase of the MR signal. Tissue tagging and DENSE MRI have been used to assess the kinematics of the myocardium. However, the superior resolution and accuracy of DENSE MRI allow the assessment of aortic kinematics. Phase-contrast (PC) MRI is a technique that allows the time-resolved quantification of blood flow velocity in or through a 2D plane by encoding the velocity in the phase of the MRI signal. PC MRI has been generalized to 3D spaces at the expense of decreased spatial and temporal resolution. The resulting technique is called 4D flow MRI. PC MRI and 4D flow MRI have been applied to the study of healthy and pathological hemodynamics of the heart and large arteries and are currently implemented in clinical practice for the assessment of aortic and pulmonary diseases. MRI can provide other complementary information relevant for inverse modeling analyses of the cardiovascular system. Diffusion-tensor MRI can resolve the orientation of tissue fibers based on the principle that the Brownian displacement of water molecules occurs preferentially in the direction of fibers. Gadolinium-enhanced (GE) MRI can be used to resolve the size and severity of cardiac lesions. Since healthy cell membranes are impermeable to gadolinium, this contrast agent occupies a larger volume in injured tissue where cell membrane integrity is compromised. Perfusion stress tests use contrast agents and MRI imaging to assess the severity of coronary artery insufficiency. This is performed by comparing the perfusion of contrast agents in the myocardium at rest and at a stress state (high heart rate). |
5.3 | Computerized tomography (CT) provides the best resolution among all the medical imaging techniques with pixel sizes around 0.5 mm. The high-resolution CT images can be used to assess cardiovascular kinematics through image tracking of anatomical features. However, this requires the introduction of assumptions of displacement modes. CT scans are based on X-ray technology with inherent ionizing radiation hazards. |
Section | Highlights |
---|---|
6. | The development of patient-specific inverse analyses of cardiovascular mechanics has advanced considerably recently thanks to continuous technological improvements in imaging hardware and software, decreasing cost, increased imaging availability, improvements in image-based kinematics acquisition and postprocessing, simulation engineering, and significant increases in computational power. |
6.1 | Blood vessels, in particular those of the arterial tree, function under physiological pressure load at all times and are axially pre-stretched; thus, none of the patient-specific configurations resolved by in vivo imaging is truly a stress-free or zero-strain configuration. The unloaded configuration of cardiovascular tissue is not truly stress-free. The residual stress is hypothesized to be the product of heterogeneous growth and remodeling of tissue. For patient-specific analyses, the material properties and zero-stress configuration are unknown. Thus, the solution to this problem requires the specification of at least two deformed and loaded states as input data. Direct methods for the solution of inverse elastostatic problems to determine the unloaded configuration of the heart and arteries have been incorporated into FEM solvers for hyperelastic and fiber-family material models. Several iterative methods for the solution of the unloaded configurations have been proposed. All these methods have in common that a single point or a collection of points on the surface are fixed, while forward inflation problems from unloaded configuration iterations to the known loaded configurations are solved until a convergence criterion is satisfied. Unloaded configuration iterations are estimated either by shrinking the known loaded configuration or by taking “backward” inflation steps. An alternative iterative approach is to solve the strain and stress distribution that balances the applied loads acting on the image-derived anatomic configurations without the resolution of the unloaded geometry. |
6.2 | The inverse modeling of the heart as a whole is currently unfeasible due to the complexity of the system and computational limitations. An accurate understanding of myocardial mechanics is key for the diagnosis and treatment of diverse cardiac pathologies, and potentially, to predict and stratify the risk of heart failure after infarct. The assumption of material homogeneity is a common and convenient simplification for forward and inverse models. Homogeneous models may be deemed to be adequate for the study of healthy hearts, or when the aim of the analysis is not centered on the study of focalized lesions. Homogeneous models can quantify the stiffening effect of infarct lesions and predict the natural compensation of the active component of the heart to maintain cardiac function after infarction. Modeling of material heterogeneity of the heart can provide better fits to kinematic data, can resolve property changes, and identify the location and severity of myocardial lesions. This comes with an increment of model complexity and computational expense. A common approach is to approximate spatial variations of myocardial properties and microstructure with region-wise heterogeneities. AHA standard division of the left ventricle is often used to define region-wise heterogeneity. Heterogenous models of the myocardium can identify the material properties of the infarcted zone, the border zone, and the unaffected tissue. Heterogeneous models can accurately predict how impaired activation of the myocardium affects the cardiac function in patients with left bundle branch block (LBBB). Inverse analyses with heterogeneous models have been used to predict the effect of ischemia on cardiac function, and its recovery after revascularization treatment. |
6.3 | Heart valves and leaflets are thin structures with complex motion that are difficult to resolve through in vivo imaging techniques. Owing to this, most studies on these structures are carried out in vitro. Recent developments in US imaging of heart valves are the first steps toward the in vivo inverse modeling of these structures. |
6.4 | Changes in mechanical properties of arterial walls have been associated with the onset of multiple cardiovascular pathologies and remain an important predictor of cardiovascular morbidity and mortality in clinical practice. The image-based resolution of vascular tissue kinematics is technically challenging due to the relative thinness of vascular walls. Inverse analyses of healthy arteries have been used to assess the stiffening effect of aging and to explore the effect of perivascular interaction on aortic mechanics. Aneurysms are a potentially fatal condition that consist of the enlargement of blood vessels caused by the remodeling of its wall. Aneurysmal rupture risk increases with maximum diameter on average for the entire population, although diameter alone struggles to predict rupture for any given individual. Inverse modeling has been used to obtain heterogeneous maps of mechanical stress and strain in thoracic and abdominal aneurysms and to assess the effect of disease progression on tissue stiffening. Atherosclerosis is a chronic inflammatory disease that manifests as the hardening and occlusion of arteries due to the build-up of plaque on the lumen of the arterial wall. The in vivo evaluation of the mechanical properties of atherosclerotic plaques and their mechanical environment through inverse modeling could support the assessment of risk associated with plaque rupture. |
6.5 | Computational modeling of hemodynamics is more resource consuming than tissue mechanics. Statistical analyses have shown that outputs of the inverse methods yield smaller uncertainties than CFD or 4D flow MRI data analysis alone. Inverse modeling of the fluid–structure interaction of the blood flow in the pulmonary arteries has been used to identify relevant markers of pulmonary artery hypertension. Among these markers are wall stiffness, wall shear stress and oscillation, pulse wave velocity, and regurgitant flow. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bracamonte, J.H.; Saunders, S.K.; Wilson, J.S.; Truong, U.T.; Soares, J.S. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. Appl. Sci. 2022, 12, 3954. https://doi.org/10.3390/app12083954
Bracamonte JH, Saunders SK, Wilson JS, Truong UT, Soares JS. Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. Applied Sciences. 2022; 12(8):3954. https://doi.org/10.3390/app12083954
Chicago/Turabian StyleBracamonte, Johane H., Sarah K. Saunders, John S. Wilson, Uyen T. Truong, and Joao S. Soares. 2022. "Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications" Applied Sciences 12, no. 8: 3954. https://doi.org/10.3390/app12083954
APA StyleBracamonte, J. H., Saunders, S. K., Wilson, J. S., Truong, U. T., & Soares, J. S. (2022). Patient-Specific Inverse Modeling of In Vivo Cardiovascular Mechanics with Medical Image-Derived Kinematics as Input Data: Concepts, Methods, and Applications. Applied Sciences, 12(8), 3954. https://doi.org/10.3390/app12083954