Sorption Potential of Different Forms of TiO2 for the Removal of Two Anticancer Drugs from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sorbent Preparation and Characterization
2.3. Sorbent Studies
2.4. Instrumental Procedure
2.5. Data Anaylsis
2.6. Sorption Kinetic Models
3. Results and Discussion
3.1. Kinetic Study
3.2. Modeling of Sorption Isotherms—Influence of pH
3.3. Influence of Ionic Strength
3.4. Effect of Sorbent Dosage
3.5. Sorption Thermodynamics
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Periša, M.; Babić, S. Farmaceutici u okolišu. Kem. Ind. 2015, 65, 471–482. [Google Scholar] [CrossRef]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Human Pharmaceuticals in Wastewater Treatment Processes. Crit. Rev. Environ. Sci. Technol. 2005, 35, 401–427. [Google Scholar] [CrossRef]
- González Peña, O.I.; López Zavala, M.A.; Cabral Ruelas, H. Pharmaceuticals Market, Consumption Trends and Disease Incidence Are Not Driving the Pharmaceutical Research on Water and Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.R.M.; Halls, G.; Hu, Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 2011, 163, 184–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Zhu, G.; Lu, Y.-Z.; Al-Falahi, A.H.; Lu, Y.; Huang, S.; Wan, Z. Removal of antibiotics from wastewater and its problematic effects on microbial communities by bioelectrochemical Technology: Current knowledge and future perspectives. Environ. Eng. Res. 2021, 26, 190405. [Google Scholar] [CrossRef]
- Alnajrani, M.N.; Alsager, O.A. Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Sci. Rep. 2020, 10, 794. [Google Scholar] [CrossRef]
- Dutta, J.; Mala, A.A. Removal of antibiotic from the water environment by the adsorption technologies: A review. Water Sci. Technol. 2020, 82, 401–426. [Google Scholar] [CrossRef]
- Booker, V.; Halsall, C.; Llewellyn, N.; Johnson, A.; Williams, R. Prioritising anticancer drugs for environmental monitoring and risk assessment purposes. Sci. Total Environ. 2014, 473–474, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Pieczyńska, A.; Fiszka Borzyszkowska, A.; Ofiarska, A.; Siedlecka, E.M. Removal of cytostatic drugs by AOPs: A review of applied processes in the context of green technology. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1282–1335. [Google Scholar] [CrossRef]
- Gouveia, T.I.A.; Alves, A.; Santos, M.S.F. New insights on cytostatic drug risk assessment in aquatic environments based on measured concentrations in surface waters. Environ. Int. 2019, 133, 105236. [Google Scholar] [CrossRef] [PubMed]
- Mihçiokur, H. Environmental risk assessment of commonly used anti-cancer drugs. Cumhur. Sci. J. 2021, 42, 310–320. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, V.W.C.; Giannis, A.; Wang, J.-Y. Removal of cytostatic drugs from aquatic environment: A review. Sci. Total Environ. 2013, 445–446, 281–298. [Google Scholar] [CrossRef]
- Mansouri, F.; Chouchene, K.; Roche, N.; Ksibi, M. Removal of Pharmaceuticals from Water by Adsorption and Advanced Oxidation Processes: State of the Art and Trends. Appl. Sci. 2021, 11, 6659. [Google Scholar] [CrossRef]
- Sousa, M.A.; Gonçalves, C.; Vilar, V.J.P.; Boaventura, R.A.R.; Alpendurada, M.F. Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chem. Eng. J. 2012, 198–199, 301–309. [Google Scholar] [CrossRef]
- Čizmić, M.; Ljubas, D.; Ćurković, L.; Škorić, I.; Babic, S. Kinetics and degradation pathways of photolytic and photocatalytic oxidation of the anthelmintic drug praziquantel. J. Hazard. Mater. 2017, 323, 500–512. [Google Scholar] [CrossRef]
- Bhatkhande, D.S.; Pangarkar, V.G.; Beenackers, A.A.C.M. Photocatalytic degradation for environmental applications-a review. J. Chem. Technol. Biotechnol. 2001, 77, 102–116. [Google Scholar] [CrossRef]
- Rachel, A.; Subrahmanyam, M.; Boule, P. Comparison of photocatalytic efficiencies of TiO2 in suspended and immobilized form for the photocatalytic degradation of nitrobenzene sulfonic acids. Appl. Catal. B 2002, 37, 301–308. [Google Scholar] [CrossRef]
- Babić, S.; Zrnčić, M.; Ljubas, D.; Ćurković, L.; Škorić, I. Photolytic and thin TiO2 film assisted photocatalytic degradation of sulfamethazine in aqueous solution. Environ. Sci. Pollut. Res. 2015, 22, 11372–11386. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, B.; Chen, H.; Wang, Y.; Li, H. Interactions between carbon nanotubes and sulfonamide antibiotics in aqueous solutions under various physicochemical conditions. J. Environ. Sci. Health A 2013, 48, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Awfa, D.; Ateia, M.; Fujii, M.; Johnson, M.S.; Yoshimura, C. Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. Water Res. 2018, 142, 26–45. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Gaoa, B.; Zheng Chena, G.; Mokaya, R.; Sotiropoulos, S.; Li Puma, G. Carbon nanotube/titanium dioxide (CNT/TiO2) core–shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties. Appl. Catal. B 2011, 110, 50. [Google Scholar] [CrossRef]
- Silva, C.G.; Faria, J.L. Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl. Catal. B 2010, 101, 81–89. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Zhang, S.; Pan, B. Application potential of carbon nanotubes in water treatment: A review. J. Environ. Sci. 2013, 25, 1263–1280. [Google Scholar] [CrossRef]
- Bandla, J.; Ganapaty, S. Stability indicating UPLC method development and validation for the determination of crizotinib in pharmaceutical dosage forms. Int. J. Sci. Prog. Res. 2018, 9, 1493–1498. [Google Scholar]
- Mioduszewska, K.; Dołżonek, J.; Wyrzykowski, D.; Kubik, Ł.; Wiczling, P.; Sikorska, C.; Toński, M.; Kaczyński, Z.; Stepnowski, P.; Białk-Bielińska, A. Overview of experimental and computational methods for the determination of the pKa values of 5-fluorouracil, cyclophosphamide, ifosfamide, imatinib. TrAC Trends Anal. Chem. 2017, 97, 283–296. [Google Scholar] [CrossRef]
- Grčić, I.; Marčec, J.; Radetić, L.; Radovan, A.M.; Melnjak, I.; Jajčinović, I.; Brnardić, I. Ammonia and methane oxidation on TiO2 supported on glass fiber mesh under artificial solar irradiation. Environ. Sci. Pollut. Res. 2020, 28, 18354–18367. [Google Scholar] [CrossRef]
- Malinowski, S.; Presečki, I.; Jajčinović, I.; Brnardić, I.; Mandić, V.; Grčić, I. Intensification of dihydroxybenzenes degradation over immobilized TiO2 based photocatalysts under simulated solar light. Appl. Sci. 2020, 10, 7571. [Google Scholar] [CrossRef]
- Kim, Y.; Lim, S.; Han, M.; Cho, J. Sorption characteristics of oxytetracycline, amoxicillin, and sulfathiazole in two different soil types. Geoderma 2012, 185–186, 97–101. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Webber, T.W.; Chakkravorti, R.K. Pore and solid diffusion models for fixed-bedadsorbers. AlChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Mutavdžić Pavlović, D.; Ćurković, L.; Macan, J.; Žižek, K. Eggshell as a New Biosorbent for the Removal of Pharmaceuticals From Aqueous Solutions. Clean-Soil Air Water 2017, 45, 1700082. [Google Scholar] [CrossRef]
- Park, J.Y.; Huwe, B. Effect of pH and soil structure on transport of sulfonamide antibiotics in agricultural soils. Environ. Pollut. 2016, 213, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Haghseresht, F.; Lu, G.Q. Adsorption Characteristics of Phenolic Compounds onto Coal-Reject-Derived Adsorbents. Energy Fuels 1998, 12, 1100–1107. [Google Scholar] [CrossRef]
- Glavaš, Z.; Štrkalj, A. Kinetics of adsorption process for the system waste mold sand/Cu (II) ions. Hrvat. Vode 2015, 23, 185. [Google Scholar]
- Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon 496 nanotubes: pH dependence and thermodynamics. Chemosphere 2014, 95, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.; Vairamuthu, R.; Ponnusamy, S. Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive orange 16 on activated carbon derived from Ananas comosus (L.) carbon. ARPN J. Eng. Appl. Sci. 2011, 6, 15–26. [Google Scholar]
- Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. South Afr. J. Chem. Eng. 2020, 32, 39–55. [Google Scholar] [CrossRef]
- Mamitiana Razanajatovoa, R.; Dinga, J.; Zhanga, S.; Jianga, H.; Zoua, Z. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Mar. Pollut. Bull. 2018, 136, 516–523. [Google Scholar] [CrossRef]
- Gora, S.L.; Andrews, S.A. Adsorption of natural organic matter and disinfection byproduct precursors from surface water onto TiO2 nanoparticles: pH effects, isotherm modelling and implications for using TiO2 for drinking water treatment. Chemosphere 2017, 174, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.; Muneer, M.; Bahnemann, D. Heterogeneous photocatalysed degradation of two selected pesticide derivatives, triclopyr and daminozid in aqueous suspensions of titanium dioxide. J. Environ. Manag. 2006, 80, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Secrétan, P.H.; Karoui, M.; Sadou Yayé, H.; Levi, Y.; Tortolano, L.; Solgadi, A.; Yagoubi, N.; Do, B. Imatinib: Major photocatalytic degradation pathways in aqueous media and the relative toxicity of its transformation products. Sci. Total Environ. 2019, 655, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Nazeer, A.A.; Amin, M.O.; Madkour, M. The efect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 20174. [Google Scholar] [CrossRef] [PubMed]
- Yener, H.B. Removal of Cefdinir from Aqueous Solution Using Nanostructure Adsorbents of TiO2, SiO2 and TiO2/SiO2: Equilibrium, thermodynamic and kinetic studies. Chem. Biochem. Eng. Q. 2019, 33, 235–248. [Google Scholar] [CrossRef]
- Theivarasu, C.; Mylsamy, S. Equilibrium and kinetic adsorption studies of rhodamine-B from aqueous solutions using cocoa (Theobroma cacao) shell as a new adsorbent. Int. J. Eng. Sci. Technol. 2010, 2, 6284–6292. [Google Scholar]
- Tor, A.; Cengeloglu, Y. Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J. Hazard. Mater. 2006, 138, 409–415. [Google Scholar] [CrossRef]
- Toński, M.; Dołżonek, J.; Paszkiewicz, M.; Wojsławski, J.; Stepnowski, P.; Białk-Bielińska, A. Preliminary evaluation of the application of carbon nanotubes as potential adsorbents for the elimination of selected anticancer drugs from water matrices. Chemosphere 2018, 201, 32–40. [Google Scholar] [CrossRef]
- Santanu Mukherjee, S.; Weihermüller, L.; Tappe, W.; Hofmann, D.; Köppchen, S.; Laabs, V.; Vereecken, H.; Burauel, P. Sorption–desorption behaviour of bentazone, boscalid and pyrimethanilin biochar and digestate based soil mixtures for biopurification systems. Sci. Tot. Environ. 2016, 559, 63–73. [Google Scholar] [CrossRef]
- Tolić, K.; Mutavdžić Pavlović, D.; Stankir, N.; Runje, M. Biosorbents from Tomato, Tangerine, and Maple Leaves for the Removal of Ciprofloxacin from Aqueous Media. Water Air Soil Pollut. 2021, 232, 1–16. [Google Scholar] [CrossRef]
- Doretto, K.M.; Rath, S. Sorption of sulfadiazine on Brazilian soils. Chemosphere 2013, 90, 2027–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Z.; Yao, J.; Zhu, M.; Chen, H.; Wang, F.; Liu, X. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead (II) by coal-based activated carbon. Springer Plus 2016, 5, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguedach, A.; Brosillon, S.; Morvan, J.; Lhadi, E.K. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. J. Hazard. Mater. 2008, 150, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Golet, E.M.; Xifra, I.; Siegrist, H.; Alder, A.C.; Giger, W. Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil. Environ. Sci. Technol. 2003, 37, 3243–3249. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, J.; Amin, N.A.S.; Shahzad, K. A review on removal of pharmaceuticals from water by adsorption. Desalin. Water Treat. 2016, 57, 12842–12860. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, R.; Choi, H.; Bhattacharjee, C. Involvement of process parameters and various modes of application of TiO2 nanoparticles in heterogeneous photocatalysis of pharmaceutical wastes–a short review. RSC Adv. 2014, 4, 57250–57266. [Google Scholar] [CrossRef]
- Awala, H.A.; El Jamal, M.M. Equilibrium and kinetics study of adsorption of some dyes onto feldspar. J. Chem. Technol. Metall. 2011, 46, 45–52. [Google Scholar]
- Malakootian, M.; Nasiri, A.; Gharaghani, M.A. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem. Eng. Commun. 2019, 207, 56–72. [Google Scholar] [CrossRef]
- Yu, F.; Wu, Y.; Li, X.; Ma, J. Kinetic and Thermodynamic Studies of Toluene, Ethylbenzene, and m-Xylene Adsorption from Aqueous Solutions onto KOH-Activated Multiwalled Carbon Nanotubes. J. Agric. Food Chem. 2012, 60, 12245–12253. [Google Scholar] [CrossRef]
- Saha, P.; Chowdhury, S.; Gupta, S.; Kumar, I. Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chem. Eng. J. 2010, 165, 874–882. [Google Scholar] [CrossRef]
- Udovičić, M.; Baždarić, K.; Bilić-Zulle, L.; Petrovečki, M. What we need to know when calculating the coefficient of correlation? Biochem. Med. 2007, 17, 10–15. [Google Scholar] [CrossRef] [Green Version]
PhAc | IMT | CRZ |
---|---|---|
Formula | C29H31N7O | C21H22Cl2FN5O |
CAS | 152459-95-5 | 877399-52-5 |
Mr | 493.6 | 450.1 |
pKa | 8.07; 3.73; 2.56; 1.52 | 5.6; 9.4 |
log Kow | 2.89 | / |
IMT | Initial Concentration, mg/L | qe,exp, μg/g | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|---|
qe,calc, μg/g | k1, min−1 | R2 | qe,calc, μg/g | k2, g/μg min | R2 | |||
suspended TiO2 | 5 | 14.62 | 8.47 | 0.0059 | 0.9488 | 14.90 | 2.03 × 10−4 | 0.9990 |
15 | 28.40 | 8.50 | 5 × 10−5 | 0.6238 | 29.67 | 4.26 × 10−4 | 0.9981 | |
25 | 32.47 | 10.76 | 3 × 10−5 | 0.6731 | 34.25 | 3.13 × 10−4 | 0.9969 | |
TiO2-GF | 5 | 27.37 | 4.73 | 0.0002 | 0.6430 | 28.57 | 8.36 × 10−4 | 0.9989 |
15 | 118.50 | 6.52 | 0.0004 | 0.6385 | 125 | 2.96 × 10−4 | 0.9999 | |
25 | 168.25 | 8.94 | 0.0002 | 0.6516 | 174.44 | 1.67 × 10−4 | 0.9995 | |
TiO2/CNT-GF | 5 | 32.35 | 4.87 | 0.0003 | 0.5734 | 36.76 | 1.72 × 10−4 | 0.9792 |
15 | 68.18 | 8.23 | 0.0002 | 0.6100 | 85.47 | 4.20 × 10−4 | 0.8151 | |
25 | 104.65 | 10.48 | 0.0002 | 0.6309 | 161.29 | 1.05 × 10−5 | 0.5285 |
CRZ | Initial Concentration, mg/L | qe,exp, μg/g | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|---|
qe,calc, μg/g | k1, min−1 | R2 | qe,calc, μg/g | k2, g/μg min | R2 | |||
suspended TiO2 | 5 | 15.88 | 8.00 | 0.0059 | 0.9460 | 15.77 | 9.87 × 10−3 | 0.9997 |
15 | 46.32 | 7.91 | 4 × 10−5 | 0.6230 | 46.30 | 1.13 × 10−3 | 0.9996 | |
25 | 67.39 | 10.21 | 5 × 10−5 | 0.7200 | 68.03 | 4.12 × 10−4 | 0.9989 | |
TiO2-GF | 5 | 42.39 | 2.86 | 0.0002 | 0.4222 | 42.55 | 7.15 × 10−4 | 1.000 |
15 | 120.57 | 5.72 | 0.0002 | 0.7360 | 121.95 | 5.37 × 10−4 | 0.9996 | |
25 | 207.93 | 8.99 | 0.0004 | 0.9133 | 212.77 | 7.43 × 10−4 | 0.9954 | |
TiO2/CNT-GF | 5 | 30.29 | 3.90 | 6 × 10−5 | 0.3427 | 30.40 | 7.07 × 10−3 | 1.000 |
15 | 86.52 | 7.35 | 0.0002 | 0.648 | 88.50 | 3.39 × 10−4 | 0.9996 | |
25 | 121.43 | 9.96 | 0.0002 | 0.7592 | 128.21 | 1.07 × 10−4 | 0.9954 |
Sample | c0, mg/L | Intraparticle Diffusion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
First Stage | Second Stage | Third Stage | ||||||||
kp1, µg/g min1/2 | R2 | C1 | kp2, µg/g min1/2 | R2 | C2 | kp3, µg/g min1/2 | R2 | C3 | ||
suspended TiO2 | 5 | 2.484 | 0.9731 | 5.757 | 0.1139 | 0.8928 | 10.73 | 0.1018 | 0.9800 | 10.92 |
15 | 3.257 | 0.9751 | 8.884 | 0.5956 | 0.9853 | 12.35 | 0.2395 | 0.9997 | 19.34 | |
25 | 3.475 | 0.9577 | 9.525 | 0.4854 | 0.9901 | 15.42 | 0.4181 | 0.9788 | 17.096 | |
TiO2-GF | 5 | 0.7496 | 0.9828 | 7.675 | 1.6248 | 0.9915 | 2.012 | 0.0121 | 0.8842 | 27.19 |
15 | 12.317 | 0.9942 | 4.801 | 4.8479 | 0.9873 | 44.82 | 0.1761 | 0.9614 | 115.88 | |
25 | 12.738 | 0.9840 | 40.46 | 8.4091 | 0.9867 | 35.57 | 0.0867 | 0.9994 | 166.9 | |
TiO2/CNT-GF | 5 | 1.732 | 0.9623 | 4.491 | 2.7714 | 0.9100 | 8.461 | 0.0018 | 0.8187 | 32.33 |
15 | 5.338 | 0.9557 | 18.016 | 5.5006 | 0.9850 | 15.58 | 0.0402 | 0.9712 | 67.58 | |
25 | 5.018 | 0.9373 | 17.199 | 10.283 | 0.9694 | 51.27 | 0.1127 | 0.9920 | 102.87 |
Sample | c0, mg/L | Intraparticle Diffusion | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
First Stage | Second Stage | Third Stage | ||||||||
kp1, µg/g min1/2 | R2 | C1 | kp2, µg/g min1/2 | R2 | C2 | kp3, µg/g min1/2 | R2 | C3 | ||
suspended TiO2 | 5 | 0.4913 | 0.9539 | 11.00 | 0.0330 | 0.9046 | 14.51 | - | - | - |
15 | 2.318 | 0.9776 | 17.81 | 0.6452 | 0.9935 | 31.13 | 0.1536 | 0.9508 | 40.21 | |
25 | 2.814 | 0.9465 | 20.05 | 1.779 | 0.9395 | 27.35 | 0.3887 | 0.9971 | 52.47 | |
TiO2-GF | 5 | 1.261 | 0.9530 | 30.34 | 0.1787 | 0.8709 | 39.17 | 0.0045 | 0.9976 | 42.22 |
15 | 5.441 | 0.9524 | 60.15 | 0.6495 | 0.9812 | 98.46 | 0.0220 | 1.000 | 119.73 | |
25 | 14.914 | 0.9918 | 0.7623 | 4.138 | 0.9168 | 80.25 | 2.803 | 0.9994 | 102.09 | |
TiO2/CNT-GF | 5 | 2.009 | 0.8401 | 15.59 | 0.1506 | 0.9554 | 26.73 | 0.0210 | 0.9436 | 29.54 |
15 | 17.532 | 0.9269 | 2.124 | 1.948 | 0.9928 | 43.26 | 0.3957 | 0.9324 | 72.35 | |
25 | 10.690 | 0.9609 | 17.21 | 3.713 | 0.9979 | 31.72 | 1.048 | 0.9345 | 83.87 |
Isotherm Parameter | Suspended TiO2 | TiO2-GF | TiO2/CNT-GF | ||||||
---|---|---|---|---|---|---|---|---|---|
5 | 7 | 9 | 5 | 7 | 9 | 5 | 7 | 9 | |
Linear | |||||||||
Kd (mL/g) | 162.2 | 213.8 | 672.3 | 22.1 | 36.4 | 160.5 | 75.4 | 82.3 | 113.2 |
R2 | 0.9960 | 0.9980 | 0.9910 | 0.9930 | 0.9970 | 0.9910 | 0.9900 | 0.9900 | 0.9920 |
Langmuir | |||||||||
qm (mg/g) | 5.0 | 5.0 | 20 | 5.0 | 1.1 | 5.0 | 0.45 | 0.62 | 0.67 |
KL (mL/g) | 0.5 | 0.4 | 0.07 | 0.004 | 0.15 | 0.03 | 0.051 | 0.049 | 0.059 |
R2 | 0.8896 | 0.9199 | 0.9989 | 0.9990 | 0.9190 | 0.9900 | 0.9430 | 0.9540 | 0.9440 |
Freundlich | |||||||||
n | 3.0 | 2.6 | 1.4 | 0.95 | 1.88 | 0.91 | 0.64 | 0.68 | 0.66 |
KF (μg/g)(mL/μg)1/n | 2027.2 | 1944.5 | 1563.5 | 17.7 | 9.3 | 9.8 | 14.2 | 21.1 | 27.2 |
R2 | 0.9750 | 0.9990 | 0.9990 | 0.9980 | 0.9690 | 0.9910 | 0.9720 | 0.9770 | 0.9680 |
Isotherm Parameter | Suspended TiO2 | TiO2-GF | TiO2/CNT-GF | ||||||
---|---|---|---|---|---|---|---|---|---|
5 | 7 | 9 | 5 | 7 | 9 | 5 | 7 | 9 | |
Linear | |||||||||
Kd (mL/g) | 103.5 | 233.8 | 234.4 | 117.12 | 179.18 | 208.91 | 197.74 | 234.12 | 329.67 |
R2 | 0.9965 | 0.9970 | 0.9993 | 0.9980 | 0.9930 | 0.9922 | 0.9911 | 0.9936 | 0.9940 |
Langmuir | |||||||||
qm (mg/g) | 10.0 | 5.0 | 20.0 | 100 | 5.0 | 10.0 | 50 | 166.7 | 33.3 |
KL (mL/g) | 0.015 | 0.5 | 0.5 | 0.001 | 0.074 | 0.036 | 0.004 | 0.0013 | 0.0097 |
R2 | 0.9968 | 0.8665 | 0.9072 | 0.9980 | 0.9976 | 0.9990 | 0.9911 | 0.9994 | 0.9986 |
Freundlich | |||||||||
n | 1.2 | 2.6 | 2.7 | 0.99 | 1.3 | 1.2 | 0.99 | 0.97 | 0.98 |
KF (μg/g)(mL/μg)1/n | 174.2 | 2025.8 | 2105.7 | 116.5 | 399.9 | 382.6 | 204.2 | 208.8 | 329.7 |
R2 | 0.9982 | 0.9482 | 0.9707 | 0.9984 | 0.9974 | 0.9994 | 0.9965 | 0.9975 | 0.9967 |
Sample | Kd, mL/g | ΔG°, kJ/mol | ΔH°, kJ/mol | ΔS°, J/mol | ||||
---|---|---|---|---|---|---|---|---|
IMT | 298 K | 303 K | 308 K | 298 K | 303 K | 308 K | ||
suspended TiO2 | 213.8 | 61.9 | 49.7 | −13.3 | −10.4 | −10.0 | −57.9 | −151.0 |
TiO2-GF | 36.4 | 40.3 | 47.4 | −8.8 | −9.3 | −9.5 | 10.4 | 64.6 |
TiO2/CNT-GF | 82.3 | 82.5 | 88.7 | −10.9 | −11.1 | −1.8 | 2.9 | 46.4 |
CRZ | ||||||||
suspended TiO2 | 233.8 | 268.8 | 271.7 | −13.5 | −14.3 | −14.8 | 16.7 | 101.7 |
TiO2-GF | 179.2 | 180.9 | 197.6 | −10.1 | −11.6 | −11.9 | 3.82 | 55.8 |
TiO2/CNT-GF | 234.1 | 325.2 | 357.0 | −8.1 | −8.7 | −9.7 | 5.97 | 65.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tolić Čop, K.; Mutavdžić Pavlović, D.; Duić, K.; Pranjić, M.; Fereža, I.; Jajčinović, I.; Brnardić, I.; Špada, V. Sorption Potential of Different Forms of TiO2 for the Removal of Two Anticancer Drugs from Water. Appl. Sci. 2022, 12, 4113. https://doi.org/10.3390/app12094113
Tolić Čop K, Mutavdžić Pavlović D, Duić K, Pranjić M, Fereža I, Jajčinović I, Brnardić I, Špada V. Sorption Potential of Different Forms of TiO2 for the Removal of Two Anticancer Drugs from Water. Applied Sciences. 2022; 12(9):4113. https://doi.org/10.3390/app12094113
Chicago/Turabian StyleTolić Čop, Kristina, Dragana Mutavdžić Pavlović, Katarina Duić, Minea Pranjić, Iva Fereža, Igor Jajčinović, Ivan Brnardić, and Vedrana Špada. 2022. "Sorption Potential of Different Forms of TiO2 for the Removal of Two Anticancer Drugs from Water" Applied Sciences 12, no. 9: 4113. https://doi.org/10.3390/app12094113
APA StyleTolić Čop, K., Mutavdžić Pavlović, D., Duić, K., Pranjić, M., Fereža, I., Jajčinović, I., Brnardić, I., & Špada, V. (2022). Sorption Potential of Different Forms of TiO2 for the Removal of Two Anticancer Drugs from Water. Applied Sciences, 12(9), 4113. https://doi.org/10.3390/app12094113