Comparative Studies on the Antioxidant, Antifungal, and Wound Healing Activities of Solenostemma arghel Ethyl Acetate and Methanolic Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Plant Materials
2.3. Preparation of Plant Extract
2.4. Collection and Preservation of Material from Injured Parts for Investigation of Yeast and Fungal Infections
2.5. Antifungal Activity Assay
2.6. DPPH Antioxidant Activity
2.7. GC-MS Analysis of Released VOCs from S. arghel EtOAc and MeoH Extracts
2.8. Preparation of S. arghel EtOAc and MeoH Extracts 2% Gels
2.9. Evaluation of In Vivo Wound Healing Activity
2.9.1. The Ethical Approval
2.9.2. Animals
2.9.3. Excisional Wound Model
2.9.4. Assessment of Wound Diameter
2.9.5. Histopathology
2.9.6. Immunohistochemistry
2.9.7. Clinical Study
2.9.8. Treatment Procedures
2.10. Statistical Analysis
3. Results
3.1. GC-Ms Analysis of VOCs Produced by S. arghel in EtOAc and MeoH Extractions
3.2. Antioxidant Activity of S. arghel
3.3. Contaminated Wounds by Fungi and Yeast
3.4. Antifungal Activity of S. arghel VOCs
3.5. Clinical Observations
3.6. Histopathological Findings
3.7. Immunohistochemistry Findings
3.8. Clinical Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farahpour, M.R.; Habibi, M. Evaluation of the Wound Healing Activity of an Ethanolic Extract of Ceylon Cinnamon in Mice. Vet. Med. 2012, 57, 53–57. [Google Scholar]
- Mousa, H.-L. Aerobic, Anaerobic and Fungal Burn Wound Infections. J. Hosp. Infect. 1997, 37, 317–323. [Google Scholar] [CrossRef]
- Bowler, P.G. The Microbiology of Acute and Chronic Wounds. Wounds 1999, 11, 72–78. [Google Scholar]
- Bessa, L.J.; Fazii, P.; Di Giulio, M.; Cellini, L. Bacterial Isolates from Infected Wounds and Their Antibiotic Susceptibility Pattern: Some Remarks about Wound Infection. Int. Wound J. 2015, 12, 47–52. [Google Scholar] [CrossRef]
- Kingsley, A. A Proactive Approach to Wound Infection. Nurs. Stand. 2001, 15, 50. [Google Scholar] [CrossRef]
- Kalan, L.; Loesche, M.; Hodkinson, B.P.; Heilmann, K.; Ruthel, G.; Gardner, S.E.; Grice, E.A. Redefining the Chronic-Wound Microbiome: Fungal Communities Are Prevalent, Dynamic, and Associated with Delayed Healing. MBio 2016, 7, e01058-16. [Google Scholar] [CrossRef] [Green Version]
- Dowd, S.E.; Delton Hanson, J.; Rees, E.; Wolcott, R.D.; Zischau, A.M.; Sun, Y.; White, J.; Smith, D.M.; Kennedy, J.; Jones, C.E. Survey of Fungi and Yeast in Polymicrobial Infections in Chronic Wounds. J. Wound Care 2011, 20, 40–47. [Google Scholar]
- Gayas, M.A.; Ahmad, R.A.; Gugjoo, M.B.; Handoo, N. Fungal Wound Infections: Mini Review. Pharma Innov. 2018, 7, 295–298. [Google Scholar]
- Seth, A.K.; Geringer, M.R.; Hong, S.J.; Leung, K.P.; Mustoe, T.A.; Galiano, R.D. In Vivo Modeling of Biofilm-Infected Wounds: A Review. J. Surg. Res. 2012, 178, 330–338. [Google Scholar] [CrossRef]
- Jørgensen, E.; Lazzarini, G.; Pirone, A.; Jacobsen, S.; Miragliotta, V. Normal Microscopic Anatomy of Equine Body and Limb Skin: A Morphological and Immunohistochemical Study. Ann. Anat. Anat. Anz. 2018, 218, 205–212. [Google Scholar] [CrossRef]
- Sardari, K.; Kazemi, H.; Emami, M.R.; Movasaghi, A.R.; Goli, A.A. Role of Collagen Cross-Linking on Equine Wound Contraction and Healing. Comp. Clin. Path. 2009, 18, 239–247. [Google Scholar] [CrossRef]
- Theoret, C.L.; Wilmink, J.M. Aberrant Wound Healing in the Horse: Naturally Occurring Conditions Reminiscent of Those Observed in Man. Wound Repair Regen. 2013, 21, 365–371. [Google Scholar] [CrossRef]
- Jørgensen, E.; Bay, L.; Skovgaard, L.T.; Bjarnsholt, T.; Jacobsen, S. An Equine Wound Model to Study Effects of Bacterial Aggregates on Wound Healing. Adv. Wound Care 2019, 8, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Westgate, S.J.; Percival, S.L.; Knottenbelt, D.C.; Clegg, P.D.; Cochrane, C.A. Microbiology of Equine Wounds and Evidence of Bacterial Biofilms. Vet. Microbiol. 2011, 150, 152–159. [Google Scholar] [CrossRef] [Green Version]
- El-Kamali, H.H.; Khalid, S.A. The Most Common Herbal Remedies in Dongola Province, Northern Sudan. Fitoter 1998, 69, 118–121. [Google Scholar]
- Kamel, M.S.; Ohtani, K.; Hasanain, H.A.; Mohamed, M.H.; Kasai, R.; Yamasaki, K. Monoterpene and Pregnane Glucosides from Solenostemma Argel. Phytochemistry 2000, 53, 937–940. [Google Scholar] [CrossRef]
- Hassan, H.A.; Hamed, A.I.; El-Emary, N.A.; Springuel, I.V.; Mitome, H.; Miyaoka, H. Pregnene Derivatives from Solenostemma Argel Leaves. Phytochemistry 2001, 57, 507–511. [Google Scholar] [CrossRef]
- El-Kheir, K.S.E.; Murwa, A.M. Chemical Composition, Minerals, Protein Fractionation, and Anti-Nutrition Factors in Leaf of Hargel Plant (Solenostemma argel). Eur. J. Sci. Res. 2010, 43, 430–434. [Google Scholar]
- Idris, T.I.M.; Ibrahim, A.M.A.; Mahdi, E.M.; Taha, A.K. Influence of Argel (Solenostemma argel Del. Hayne) Soil Applications on Flowering and Yield of Date Palm (Phoenix dactylifera L.). Agric. Biol. J. N. Am. 2011, 2, 538–542. [Google Scholar] [CrossRef]
- Ounaissia, K.; Pertuit, D.; Mitaine-Offer, A.-C.; Miyamoto, T.; Tanaka, C.; Delemasure, S.; Dutartre, P.; Smati, D.; Lacaille-Dubois, M.-A. New Pregnane and Phenolic Glycosides from Solenostemma Argel. Fitoterapia 2016, 114, 98–104. [Google Scholar]
- Kamel, N.M.; Abdel-Motaal, F.F.; El-Zayat, S.A. Endophytic Fungi from the Medicinal Herb Euphorbia Geniculata as a Potential Source for Bioactive Metabolites. Arch. Microbiol. 2020, 202, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Sinha, G.K.; Gulati, B.C. Antibacterial and Antifungal Study of Some Essential Oils and Some of Their Constituents. Indian Perfum. 1990, 34, 126–129. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, J.; Tripathi, N.N. Inhibition of Storage Fungi of Blackgram (Vigna mungo L.) by Some Essential Oils. Flavour Fragr. J. 1999, 14, 1–4. [Google Scholar] [CrossRef]
- Metwally, A.A.; Abdel-Hady, A.-N.A.A.; Haridy, M.A.M.; Ebnalwaled, K.; Saied, A.A.; Soliman, A.S. Wound-Healing Properties of Green (Using Lawsonia inermis Leaf Extract) and Chemically Synthesized Zno Nanoparticles in Albino Rats. Environ. Sci. Pollut. Res. 2021, 29, 23975–23987. [Google Scholar] [CrossRef]
- Sadaf, F.; Saleem, R.; Ahmed, M.; Ahmad, S.I. Healing Potential of Cream Containing Extract of Sphaeranthus Indicus on Dermal Wounds in Guinea Pigs. J. Ethnopharmacol. 2006, 107, 161–163. [Google Scholar] [CrossRef]
- Elbialy, Z.I.; Assar, D.H.; Abdelnaby, A.; Asa, S.A.; Abdelhiee, E.Y.; Ibrahim, S.S.; Abdel-Daim, M.M.; Almeer, R.; Atiba, A. Healing Potential of Spirulina Platensis for Skin Wounds by Modulating BFGF, VEGF, TGF-SS1 and α-SMA Genes Expression Targeting Angiogenesis and Scar Tissue Formation in the Rat Model. Biomed. Pharmacother. 2021, 137, 111349. [Google Scholar] [CrossRef]
- Theoret, C. Tissue Engineering in Wound Repair: The Three “R” s—Repair, Replace, Regenerate. Vet. Surg. 2009, 38, 905–913. [Google Scholar] [CrossRef]
- Santos, G.A.; Vila, M.M.D.C.; Chaud, M.V.; Silva, W.L.; de Castro, A.G.; de Oliveira, J.M., Jr.; Tubino, M.; Balcao, V.M. Antimicrobial and Antioxidant Screening of Curcumin and Pyrocatechol in the Prevention of Biodiesel Degradation: Oxidative Stability. Biofuels 2016, 7, 581–592. [Google Scholar] [CrossRef]
- Singh, D.K.; Tóth, R.; Gácser, A. Mechanisms of Pathogenic Candida Species to Evade the Host Complement Attack. Front. Cell. Infect. Microbiol. 2020, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Zakaria, A.; Abdel-Motaal, F.; Mahalel, U. Antifungal Activity of Ficus sycomorus L. Extracts against Dermatophytes and Other Associated Fungi Isolated from Camels Ringworm Lesions. J. Biol. Stud. 2018, 1, 116–132. [Google Scholar]
- Jerez, S.; Sierra, L.; de Bruno, M.P. 17-Octadecynoic Acid Improves Contractile Response to Angiotensin II by Releasing Vasocontrictor Prostaglandins. Prostaglandins Other Lipid Mediat. 2012, 97, 36–42. [Google Scholar] [CrossRef]
- Shehzad, A.; Qayyum, A.; Rehman, R.; Nadeem, F.; Raffi, M. A Review of Bioactivity Guided Medicinal Uses and Therapeutic Potentials of Noxious Weed (Alternanthera sessilis). Int. J. Chem. Biochem. Sci. 2018, 14, 95–103. [Google Scholar]
- Kadhim, M.J.; Al-Rubaye, A.F.; Hameed, I.H. Determination of Bioactive Compounds of Methanolic Extract of Vitis Vinifera Using GC-MS. Int. J. Toxicol. Pharmacol. Res. 2017, 9, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Adegoke, A.S.; Jerry, O.V.; Ademola, O.G. GC-MS Analysis of Phytochemical Constituents in Methanol Extract of Wood Bark from Durio Zibethinus Murr. Int. J. Med. Plants Nat. Prod. 2019, 5, 1–11. [Google Scholar]
- Godwin, A.; Akinpelu, B.A.; Makinde, A.M.; Aderogba, M.A.; Oyedapo, O.O. Identification of N-Hexane Fraction Constituents of Archidium Ohioense (Schimp. Ex Mull) Extract Using GC-MS Technique. J. Pharm. Res. Int. 2015, 6, 366–375. [Google Scholar] [CrossRef]
- Varsha, K.K.; Devendra, L.; Shilpa, G.; Priya, S.; Pandey, A.; Nampoothiri, K.M. 2,4-Di-Tert-Butyl Phenol as the Antifungal, Antioxidant Bioactive Purified from a Newly Isolated Lactococcus sp. Int. J. Food Microbiol. 2015, 211, 44–50. [Google Scholar] [CrossRef]
- Lewis, T.; Macaulay, E.D.M. Design and Elevation of Sex-attractant Traps for Pea Moth, Cydia Nigricana (Steph.) and the Effect of Plume Shape on Catches. Ecol. Entomol. 1976, 1, 175–187. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.; Kang, M.; Jang, A.; Kim, Y.R.; Kim, S.; Chang, K.; Hong, J.J.; Park, J. Inhibitory Effect of 1-tetradecanol on Helicobacter Pylori-induced Production of Interleukin-8 and Vascular Endothelial Growth Factor in Gastric Epithelial Cells. Mol. Med. Rep. 2017, 16, 9573–9578. [Google Scholar] [CrossRef]
- Swamy, M.K.; Arumugam, G.; Kaur, R.; Ghasemzadeh, A.; Yusoff, M.M.; Sinniah, U.R. GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus Amboinicus Leaves. Evid. Based Complement. Altern. Med. 2017, 2017, 1517683. [Google Scholar] [CrossRef] [Green Version]
- Albergoni, V.; Piccinni, E.; Coppellotti, O. Response to Heavy Metals in Organisms—I. Excretion and Accumulation of Physiological and Non Physiological Metals in Euglena Gracilis. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1980, 67, 121–127. [Google Scholar] [CrossRef]
- Adnan, M.; Chy, N.U.; Mostafa Kamal, A.T.M.; Azad, M.O.K.; Paul, A.; Uddin, S.B.; Barlow, J.W.; Faruque, M.O.; Park, C.H.; Cho, D.H. Investigation of the Biological Activities and Characterization of Bioactive Constituents of Ophiorrhiza Rugosa Var. Prostrata (D. Don) & Mondal Leaves through in Vivo, in Vitro, and in Silico Approaches. Molecules 2019, 24, 1367. [Google Scholar]
- Brintha, S.; Rajesh, S.; Renuka, R.; Santhanakrishnan, V.P.; Gnanam, R. Phytochemical Analysis and Bioactivity Prediction of Compounds in Methanolic Extracts of Curculigo Orchioides Gaertn. J. Pharmacogn. Phytochem. 2017, 6, 192–197. [Google Scholar]
- Ogbuehi, G.U.I.; Echeme, J.B.O. Chemical Constituents of Methanol Leaf Extract of Aspilia Africana CD Adams by GC MS. Int. J. Adv. Res. Chem. Sci. 2018, 5, 21–29. [Google Scholar] [CrossRef]
- Perumal, G.M.; Prabhu, K.; Rao, M.R.K.; Janaki, C.S.; Kalaivannan, J.; Kavimani, M. The Gc Ms Analysis of Ethyl Acetate Extract of One Herbal Plant, ‘Jatrophacurcus’. NVEO-Nat. Volatiles Essent. OILS J. NVEO 2021, 8, 6347–6354. [Google Scholar]
- Harris, E.D. Copper as a Cofactor and Regulator of Copper, Zinc Superoxide Dismutase. J. Nutr. 1992, 122, 636–640. [Google Scholar]
- Parthipan, B.; Suky, M.G.T.; Mohan, V.R. GC-MS Analysis of Phytocomponents in Pleiospermium Alatum (Wall. Ex Wight & Arn.) Swingle, (Rutaceae). J. Pharmacogn. Phytochem. 2015, 4, 216–222. [Google Scholar]
- Sosa, A.A.; Bagi, S.H.; Hameed, I.H. Analysis of Bioactive Chemical Compounds of Euphorbia Lathyrus Using Gas Chromatography-Mass Spectrometry and Fourier-Transform Infrared Spectroscopy. J. Pharmacogn. Phyther. 2016, 8, 109–126. [Google Scholar]
- Kalaimagal, C. Identification of bioactive compounds in flower of Tabernaemontana divaricata (L.) using gas chromatography–mass spectrometry analysis. Asian J. Pharm. Clin. Res. 2019, 12, 129–132. [Google Scholar] [CrossRef]
- Amer, M.S.; Barakat, K.M.; Hassanein, A.E.A. Phthalate Derivatives from Marine Penicillium Decumbens and Its Synergetic Effect against Sepsis Bacteria. Biointerface Res. Appl. Chem 2019, 9, 4070–4076. [Google Scholar]
- Zeb, A.; Ahmad, S.; Ullah, F.; Ayaz, M.; Sadiq, A. Anti-Nociceptive Activity of Ethnomedicinally Important Analgesic Plant Isodon Rugosus Wall. Ex Benth: Mechanistic Study and Identifications of Bioactive Compounds. Front. Pharmacol. 2016, 7, 200. [Google Scholar] [CrossRef] [Green Version]
- Aziba, P.I.; Adedeji, A.; Ekor, M.; Adeyemi, O. Analgesic Activity of Peperomia Pellucida Aerial Parts in Mice. Fitoterapia 2001, 72, 57–58. [Google Scholar] [CrossRef]
- Narayanamoorthi, V.; Vasantha, K.; Maruthasalam, R. GC MS Determination of Bioactive Components of Peperomia pellucida (L.) Kunth. Biosci. Discov. 2015, 6, 83–88. [Google Scholar]
- Arrigoni-Blank, M.d.F.; Oliveira, R.L.B.; Mendes, S.S.; de Albuquerque Silva, P.; Antoniolli, Â.R.; Vilar, J.C.; de Holanda Cavalcanti, S.C.; Blank, A.F. Seed Germination, Phenology, and Antiedematogenic Activity of Peperomia pellucida (L.) HBK. BMC Pharmacol. 2002, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Ashmawy, N.A.; Al Farraj, D.A.; Salem, M.Z.M.; Elshikh, M.S.; Al-Kufaidy, R.; Alshammari, M.K.; Salem, A.Z.M. Potential Impacts of Pinus Halepensis Miller Trees as a Source of Phytochemical Compounds: Antibacterial Activity of the Cones Essential Oil and n-Butanol Extract. Agrofor. Syst. 2020, 94, 1403–1413. [Google Scholar] [CrossRef]
- Otieno, A.J. Antimicrobial Activity and Phytochemical Profiles of Warburgia Ugandensis Sprague (Canellaceae) Extracts from Different Populations across the Kenyan Rift Valley. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2016. [Google Scholar]
- Kim, D.H.; Park, M.H.; Choi, Y.J.; Chung, K.W.; Park, C.H.; Jang, E.J.; An, H.J.; Yu, B.P.; Chung, H.Y. Molecular Study of Dietary Heptadecane for the Anti-Inflammatory Modulation of NF-KB in the Aged Kidney. PLoS ONE 2013, 8, e59316. [Google Scholar] [CrossRef]
- Seong, R.K.; Kim, J.A.; Shin, O.S. Wogonin, a Flavonoid Isolated from Scutellaria Baicalensis, Has Anti-Viral Activities against Influenza Infection via Modulation of AMPK Pathways. Acta Virol. 2018, 62, 78–85. [Google Scholar] [CrossRef]
- Woźniak, D.; Dryś, A.; Matkowski, A. Antiradical and Antioxidant Activity of Flavones from Scutellariae Baicalensis Radix. Nat. Prod. Res. 2015, 29, 1567–1570. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Gao, F.; Li, X.-W.; Jia, R.-H.; Meng, X.-D.; Zhao, R.; Jing, Y.-Y.; Wang, Y.; Jiang, W. The Anticonvulsant and Neuroprotective Effects of Baicalin on Pilocarpine-Induced Epileptic Model in Rats. Neurochem. Res. 2012, 37, 1670–1680. [Google Scholar] [CrossRef]
- Yang, Y.-Z.; Tang, Y.-Z.; Liu, Y.-H. Wogonoside Displays Anti-Inflammatory Effects through Modulating Inflammatory Mediator Expression Using RAW264. 7 Cells. J. Ethnopharmacol. 2013, 148, 271–276. [Google Scholar] [CrossRef]
- Dong, Q.; Chu, F.; Wu, C.; Huo, Q.; Gan, H.; Li, X.; Liu, H. Scutellaria Baicalensis Georgi Extract Protects against Alcohol-induced Acute Liver Injury in Mice and Affects the Mechanism of ER Stress. Mol. Med. Rep. 2016, 13, 3052–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahra, G.; Khadijeh, B.; Hossein, D.; Ali, S. Essential Oil Composition of Two Scutellaria Species from Iran. J. Tradit. Chin. Med. Sci. 2019, 6, 244–253. [Google Scholar] [CrossRef]
- Takahashi, C.; Kikuchi, N.; Katou, N.; Miki, T.; Yanagida, F.; Umeda, M. Possible Anti-Tumor-Promoting Activity of Components in Japanese Soybean Fermented Food, Natto: Effect on Gap Junctional Intercellular Communication. Carcinogenesis 1995, 16, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Quintanilla-Licea, R.; Morado-Castillo, R.; Gomez-Flores, R.; Laatsch, H.; Verde-Star, M.J.; Hernández-Martínez, H.; Tamez-Guerra, P.; Tamez-Guerra, R.; Rodríguez-Padilla, C. Bioassay-Guided Isolation and Identification of Cytotoxic Compounds from Gymnosperma Glutinosum Leaves. Molecules 2012, 17, 11229–11241. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.K.; Gaikwad, A.V.; Singh, K.B. Phytopharmacological Review on Acanthospermum Hispidum. J. Appl. Pharm. Sci. 2012, 2, 144–148. [Google Scholar]
- Kim, S.; Chung, W.; Kim, S.; Ko, S.; Um, J. Antiinflammatory Effect of Oldenlandia Diffusa and Its Constituent, Hentriacontane, through Suppression of Caspase-1 Activation in Mouse Peritoneal Macrophages. Phyther. Res. 2011, 25, 1537–1546. [Google Scholar] [CrossRef]
- Khajuria, V.; Gupta, S.; Sharma, N.; Kumar, A.; Lone, N.A.; Khullar, M.; Dutt, P.; Sharma, P.R.; Bhagat, A.; Ahmed, Z. Anti-Inflammatory Potential of Hentriacontane in LPS Stimulated RAW 264.7 Cells and Mice Model. Biomed. Pharmacother. 2017, 92, 175–186. [Google Scholar] [CrossRef]
- Dandekar, R.; Fegade, B.; Bhaskar, V.H. GC-MS Analysis of Phytoconstituents in Alcohol Extract of Epiphyllum Oxypetalum Leaves. J. Pharmacogn. Phytochem. 2015, 4, 149–154. [Google Scholar]
- Kumar, R.S.; Anburaj, G.; Subramanian, A.; Vasantha, S.; Selvam, A.P. Preliminary Phytochemical Investigation, Antimicrobial Activity and GC-MS Analysis of Leaf Extract of Capparis Zeylanica Linn. J. Pharmacogn. Phytochem. 2019, 8, 1399–1405. [Google Scholar]
- Roy, R.N.; Laskar, S.; Sen, S.K. Dibutyl Phthalate, the Bioactive Compound Produced by Streptomyces Albidoflavus 321.2. Microbiol. Res. 2006, 161, 121–126. [Google Scholar] [CrossRef]
- El-Shiekh, R.A.; Salama, A.; Al-Mokaddem, A.K.; Abdel-Sattar, E.A. Gastroprotective Effect of Mucilage Fraction from Solenostemma Argel via Cytoprotection and Attenuation of Oxidative Stress, Inflammation and Apoptosis. J. Herbmed Pharmacol. 2021, 10, 232–240. [Google Scholar] [CrossRef]
- Kumar, A.; Aravindhan, P.; Deecaraman, D.; Ilavarasan, R.; Padmanabhan, N. Neutral Components in the Leaves and Seeds of Syzygium Cumini. Afr. J. Pharm. Pharmacol. 2009, 3, 560–561. [Google Scholar]
- Dart, A.J.; Perkins, N.R.; Dart, C.M.; Jeffcott, L.B.; Canfield, P. Effect of Bandaging on Second Intention Healing of Wounds of the Distal Limb in Horses. Aust. Vet. J. 2009, 87, 215–218. [Google Scholar] [CrossRef]
- Carnwath, R.; Graham, E.M.; Reynolds, K.; Pollock, P.J. The Antimicrobial Activity of Honey against Common Equine Wound Bacterial Isolates. Vet. J. 2014, 199, 110–114. [Google Scholar] [CrossRef]
NO | VOCs Compounds | Molecular Formula | Rt | MW | Area% |
---|---|---|---|---|---|
1 | 17-Octadecynoic acid | C18H32O2 | 4.44 | 280 | 3.11 |
2 | 2,2-dimethyl-5-(3-methyloxiranyl)-cyclohexanone | C11H18O2 | 4.44 | 182 | 3.11 |
3 | Linoleoyl chloride | C18H31ClO | 4.60 | 298 | 0.85 |
4 | 2,2,3,3,4,4 Exadeutero,octadecanal | C18H30D6O | 4.80 | 274 | 1.13 |
5 | 1-Dodecanol, 3,7,11-trimethyl | C15H32O | 4.80 | 228 | 1.13 |
6 | 1,3,5-Triazine-2,4-diamine,6-chloro-n-ethyl- | C5H8ClN5 | 9.31 | 173 | 1.49 |
7 | 1-Chlorooctadecane | C18H37Cl | 9.31 | 288 | 1.49 |
8 | 2-Aminoethanethiol,hydrogen sulfate (Ester) | C2H7NO3S2 | 10.30 | 157 | 1.28 |
9 | 7-Hexadecenal, (Z)- | C16H30O | 10.30 | 238 | 1.28 |
10 | 9-Octadecenoic acid (Z)- | C18H34O2 | 11.74 | 282 | 1.53 |
11 | 1-Dodecene | C12H24 | 11.74 | 168 | 1.53 |
12 | 3-Trifluoroacetoxydodecane | C14H25F3O2 | 11.74 | 282 | 1.53 |
13 | Docosane | C22H46 | 13.87 | 310 | 1.60 |
14 | Farnesene epoxide, E | C15H24O | 14.26 | 220 | 1.49 |
15 | 10,13-Octadecadiynoic acid, methyl ester | C19H30O2 | 14.26 | 290 | 1.49 |
16 | 2,4-Di-tert-butylphenol | C14H22O | 14.36 | 206 | 2.91 |
17 | 9H-Fluorene | C13H10 | 15.65 | 166 | 4.94 |
18 | (E,E)-1,3,5-Tridecatriene-7,9,11-triyne | C13H10 | 15.65 | 166 | 4.94 |
19 | 8-Dodecen-1-ol, acetate, (Z)- | C14H26O2 | 15.81 | 226 | 0.62 |
20 | Undec-10-ynoic acid, heptadecylester | C28H52O2 | 15.81 | 420 | 0.62 |
21 | Undec-10-ynoic acid, octadecyl ester | C29H54O2 | 15.81 | 434 | 0.62 |
22 | Bisabolol oxide B (2-Furanmethanol, tetrahydro-à,à,5-trimethyl-5-(4-methyl-3-cyclohexen-1-yl),[2S-[2à,5á(R)]]- | C15H26O2 | 17.08 | 238 | 2.40 |
23 | Acetic acid, 10,11-dihydroxy-3,7,11 trimethyl-dodeca-2,6-dienyl ester | C17H30O4 | 17.08 | 298 | 2.40 |
24 | 2-Monooleoylglycerol trimethylsilyl ether | C27H56O4Si2 | 17.25 | 500 | 0.99 |
25 | 2,3-Bis[(trimethylsilyl)oxy]propyl (9z,12z)-9,12-octadecadienoate | C27H54O4Si2 | 17.25 | 498 | 0.99 |
26 | Benzoic acid, 2,4-bis(trimethylsiloxy)-, trimethylsilyl ester | C16H30O4Si3 | 17.25 | 370 | 0.99 |
27 | 1-Tetradecanol | C14H30O | 18.02 | 214 | 1.27 |
28 | Loliolide,2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-6-hydroxy-4,4,7a-trimethyl | C11H16O3 | 19.20 | 196 | 2.17 |
29 | 3′,4′,7-Trimethylquercetin | C18H16O7 | 20.14 | 344 | 1.27 |
30 | Neophytadiene | C20H38 | 20.36 | 278 | 5.88 |
31 | 3-Eicosyne | C20H38 | 20.36 | 278 | 5.88 |
32 | Digitoxin | C41H64O13 | 20.58 | 764 | 0.85 |
33 | Oxiranepentanoic acid, 3-undecyl-, methyl ester, trans | C19H36O3 | 20.58 | 312 | 0.85 |
34 | 01297107001 Tetraneurin—A-diol | C15H20O5 | 20.62 | 280 | 0.89 |
35 | 1-Heptatriacotanol | C37H76O | 20.62 | 538 | 0.89 |
36 | Phen-1,4-diol,2,3-dimethyl-5-trifluoromethyl | C9H9F3O2 | 20.87 | 206 | 1.34 |
37 | Ethanol, 2-(9-octadecenyloxy)-, (Z)- | C20H40O2 | 21.09 | 312 | 1.83 |
38 | 13-Heptadecyn-1-ol | C17H32O | 21.09 | 252 | 1.83 |
39 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)dec,a-6,9-diene-2,8-dione | C17H24O3 | 21.77 | 276 | 4.97 |
40 | Isochiapin B | C19H22O6 | 22.46 | 346 | 1.45 |
41 | Isochiapin B %2< | C19H26O6 | 22.46 | 350 | 1.45 |
42 | 6,8-Di-c-á-glucosylluteolin | C27H30O16 | 22.73 | 610 | 1.37 |
43 | 2,2-Dideutero octadecanal | C18H34D2O | 24.39 | 270 | 1.31 |
44 | 9-Hexadecenoic acid | C16H30O2 | 24.39 | 254 | 1.31 |
45 | Phytol | C20H40O | 24.85 | 296 | 5.16 |
46 | 9,12,15-Octadecatrienoic acid, 2,3-bis [(trimethylsilyl) oxy]propyl ester, (Z,Z,Z) | C27H52O4Si2 | 25.10 | 498 | 1.13 |
47 | Ethyl iso-allocholate or Ethyl 3,7,12-trihydroxycholan-24-oate | C26H44O5 | 27.26 | 436 | 1.21 |
48 | Diisooctyl phthalate | C24H38O4 | 30.97 | 390 | 9.32 |
49 | Vitamin E (alpha-tocopherol) | C29H50O2 | 32.02 | 430 | 9.99 |
50 | 5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one,9-(acetyloxy)-3-[(acetyloxy)methyl]-1,1a,1b,4,4a,7a,7b,8,9,9a-decahydro-4a,7b,9a-trihydroxy-1,1,6,8-tetramethyl-,[1ar-(1aà,1bá,4aá,7aà,7bà,8à,9á,9aà)]- | C24H32O8 | 34.94 | 448 | 7.36 |
51 | Methyl hexadecadienoate | C17H30O2 | 34.94 | 266 | 7.36 |
No. | VOCs Compounds | Formula | RT | MW | Area% |
---|---|---|---|---|---|
1 | Heptane, 2,2,4,6,6-pentamethyl- | C12H26 | 4.43 | 170 | 4.083 |
2 | Tetradecane, 2,2-dimethyl- | C16H34 | 4.43 | 226 | 4.083 |
3 | Decane, 3,6-dimethyl- | C12H26 | 5.22 | 170 | 1.81 |
4 | 3-Ethyl-3-methylheptane | C10H22 | 5.22 | 142 | 1.81 |
5 | Eicosane | C20H42 | 7.38 | 282 | 2.53 |
6 | 2-Bromotetradecane | C14H29Br | 7.38 | 276 | 2.53 |
7 | Hexadecane | C16H34 | 7.38 | 226 | 2.53 |
8 | Dodecane | C12H26 | 7.733 | 170 | 1.883 |
9 | Tetradecane | C14H30 | 7.733 | 198 | 1.883 |
10 | 1-Iodo-2-methylnonane | C10H21I | 7.733 | 268 | 1.883 |
11 | Heneicosane | C21H44 | 9.090 | 296 | 10.310 |
12 | Heptadecane | C17H36 | 9.090 | 240 | 10.310 |
13 | Octadecane, 1-iodo- | C18H37I | 9.090 | 380 | 10.310 |
14 | Octadecane, 2-methyl- | C19H40 | 9.170 | 268 | 1.835 |
15 | Hexacosane | C26H54 | 9.496 | 366 | 8.846 |
16 | Heptadecane, 2-methyl- | C18H38 | 9.496 | 254 | 8.846 |
17 | Heptadecane, 8-methyl- | C18H38 | 9.496 | 254 | 8.846 |
18 | Pentacosane | C25H52 | 9.587 | 352 | 2.645 |
19 | Triacontane | C30H62 | 9.587 | 422 | 2.645 |
20 | Heptadecane, 9-octyl- | C25H52 | 9.685 | 352 | 2.395 |
21 | Hentriacontane | C31H64 | 11.378 | 436 | 11.344 |
22 | Sulfurous acid, hexyl octyl ester | C14H30O3S | 11.378 | 278 | 11.344 |
23 | Heptacosane | C27H56 | 11.487 | 380 | 2.169 |
24 | Octadecane | C18H38 | 11.939 | 254 | 8.357 |
25 | Sulfurous acid, butyl heptadecyl ester | C21H44O3S | 12.271 | 376 | 2.020 |
26 | 7,9-Di-tert-butyl-1-oxaspiro (4,5)deca-6,9diene-2,8-dione | C17H24O3 | 14.571 | 276 | 5.491 |
27 | 1,3-Pentadiene, 1,1-diphenyl-, (Z) | C17H16 | 14.571 | 220 | 5.491 |
28 | Dibutyl phthalate | C16H2O4 | 15.241 | 278 | 10.14 |
29 | Heneicosane, 3-methyl- | C22H46 | 19.092 | 310 | 2.024 |
30 | 2-methyloctacosane | C29H60 | 19.092 | 408 | 2.024 |
Time in Days | GI | GII | GIII |
---|---|---|---|
3 | 1.56 ± 0.336 | 0. 80 ± 0.27 a | 0.97 ± 0.53 |
7 | 1.2 ± 0.35 | 0.47 ± 0.18 a | 0.7 ± 0.3 |
14 | 0.12 ± 0.6 | 0.002 ± 0.004 a | 0.02 ± 0.03 a |
Time in Days | GI | GII | GIII |
---|---|---|---|
3 | 86.7±18.7 | 44.6 ± 14.94 a | 54 ± 29.4 |
7 | 66 ± 19.7 | 25.96 ± 9.8 a | 39.4 ± 16.7 |
14 | 6.4 ± 3.2 | 0.08 ± 0.2 a | 0.86 ± 1.7 a |
Time in Days | GI | GII | GIII |
---|---|---|---|
3 | 13.3 ± 18.7 | 55.4 ± 14.94 a | 30.3 ± 28.4 |
7 | 33.9 ± 19.7 | 74.04 ± 9.8 a | 60.4 ± 16.7 |
14 | 93.6 ± 3.2 | 99.9 ± 0.2 a | 99.14 ± 1.7 a |
Compound Name | Activity |
---|---|
17-Octadecynoic acid | Increased the efficacy of angiotensin II (17-ODYA-effect) as well as simultaneous incubation with miconazole (epoxygenase-inhibitor) and CAY 10434 (hydroxylaseinhibitor) [32] |
1-Chlorooctadecane | Hepatitis, bronchitis, tight chest, lung diseases and asthma treatment, anti-diabetic, anticancer, anti-ulcer, antioxidant, antimalarial, anti-diarrheal, prophylactic, antimicrobial, anti-inflammatory, antipyretic potentials, wound healing [33]. |
9-Octadecenoic acid (z)- | Antimicrobial, anti-inflammatory [34], antioxidant activity, anticancer, anemiagenic, insectifuge, antiandrogenic, dermatitigenic [35] |
Docosane | Antibacterial activity [36] |
2,4-Di-tert-butylphenol | Fungicidal, antioxidant activity, anticancer [37] |
8-Dodecen-1-ol, acetate, (Z)- | Pesticide [38] |
1-Tetradecanol | Anti-inflammatory effect and initiation of the reformation of the soft tissues [39] |
Neophytadiene | Anti-inflammatory, analgesic, antipyretic, antimicrobial, and antioxidant compound [40,41]; Carminative, Gastrin inhibitor Antiulcerative, Histamine release inhibitor, Antiprotozoal (Leishmania) Antiparasitic [42] |
Digitoxin | Anesthetic, proliferative diseases treatment, dementia treatment, Cardiotonic, Diuretic [43] |
Oxiranepentanoic acid, 3-undecyl-, methyl ester, trans | Anti-inflammatory [40,44] antioxidant, hypocholesterolemic nematicide, pesticide, antiandrogenic flavor, hemolytic,5-Alpha reductase inhibitor, potent mosquito larvicide [44] |
1-Heptatriacotanol | Antibacterial, anticancer, antiprotozoal, chemo-preventive, anti-inflammatory, antimalarial, anti-flu, antiviral, enzyme inhibitor, anti-hyper-cholesterolemic [45]. |
13-Heptadecyn-1-ol | Anti-inflammatory, antifungal [34]. |
2,2-Dideutero Octadecanal | Antimicrobial activity [46] |
9-Hexadecenoic acid | Anti-inflammatory [34] |
Phytol | Anti-inflammatory, anticancer, diuretic [47], antimicrobial and antioxidant, [48], [40]; Lipid metabolism regulator, antiparasitic, antihelmintic, antiprotozoal (Leishmania) Histamine release inhibitor, spasmolytic [42] |
9,12,15-Octadecatrienoic acid, 2,3-Bis[(Trimethylsilyl) Oxy]propyl ester, (Z,Z,Z) | Anti-inflammatory, hypocholesterolemic, anticancer, hepatoprotective, nematicide, antihistaminic, antieczemic, antiacne, antiarthritic, and antiandrogenic activities [49] |
Diisooctyl phthalate | Antimicrobial [50]. |
Vitamin E (alpha-tocopherol) | Analgesic, neuropathic pain [51], lipid peroxidase inhibitor, anti-inflammatory, free radical scavenger, spasmolytic, histamine release inhibitor anti-infective [42] |
5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one,9-(acetyloxy)-3-[(acetyloxy)methyl]-1,1a,1b,4,4a,7a,7b,8,9,9a-decahydro-4a,7b,9a-trihydroxy-1,1,6,8-tetramethyl-,[1ar-(1aà,1bá,4aá,7aà,7bà,8à,9á,9aà)]- | Of a therapeutic value in the treatment of abscesses, boils, abdominal pain, acne, colic, fatigue, gout, headache, renal disorders, impotence, measles, mental disorders, wounds, and bleeding [52,53,54] |
Methyl Hexadecadienoate | Antifungal activity [55]. |
Heneicosane | Antimicrobial activity [56]. |
Heptadecane | Anti-inflammatory and antioxidant [57]. |
Octadecane, 1-iodo- | Antiviral [58] antioxidant [59], anticonvulsant [60], anti-inflammatory [61] and hepatoprotective [62], treatment of constipation, wounds, and stress [63]. |
Hentriacontane | Antitumor activity [64]. Its cytotoxic effect on lymphoma cells was also reported [65]. Antimicrobial and anticancer activity [66]. Anti-inflammatory activity as it inhibits the inflammatory mediators [67] through the blockage of the NF-kB pathway via down-regulating pro-inflammatory mediators (NO, PGE2 and LTB4) and cytokines (TNF-a, IL-6, IL-1b and IL-10) [68]. |
Heptacosane | Anti-corrosive and antioxidant [69] |
Sulfurous acid, butyl heptadecyl ester | Antimicrobial [70] |
Dibutyl phthalate | Antimicrobial [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Motaal, F.F.; Maher, Z.M.; Ibrahim, S.F.; El-Mleeh, A.; Behery, M.; Metwally, A.A. Comparative Studies on the Antioxidant, Antifungal, and Wound Healing Activities of Solenostemma arghel Ethyl Acetate and Methanolic Extracts. Appl. Sci. 2022, 12, 4121. https://doi.org/10.3390/app12094121
Abdel-Motaal FF, Maher ZM, Ibrahim SF, El-Mleeh A, Behery M, Metwally AA. Comparative Studies on the Antioxidant, Antifungal, and Wound Healing Activities of Solenostemma arghel Ethyl Acetate and Methanolic Extracts. Applied Sciences. 2022; 12(9):4121. https://doi.org/10.3390/app12094121
Chicago/Turabian StyleAbdel-Motaal, Fatma F., Zainab M. Maher, Samah F. Ibrahim, Amany El-Mleeh, Maged Behery, and Asmaa A. Metwally. 2022. "Comparative Studies on the Antioxidant, Antifungal, and Wound Healing Activities of Solenostemma arghel Ethyl Acetate and Methanolic Extracts" Applied Sciences 12, no. 9: 4121. https://doi.org/10.3390/app12094121
APA StyleAbdel-Motaal, F. F., Maher, Z. M., Ibrahim, S. F., El-Mleeh, A., Behery, M., & Metwally, A. A. (2022). Comparative Studies on the Antioxidant, Antifungal, and Wound Healing Activities of Solenostemma arghel Ethyl Acetate and Methanolic Extracts. Applied Sciences, 12(9), 4121. https://doi.org/10.3390/app12094121