The Use of the Permutation Algorithm for Suboptimising the Position of Used Nozzles on the Field Sprayer Boom
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Data
4. Mathematical Model for Any Group with the Spray Angle α ≤ 136.4°
4.1. Designations and Formulas
4.2. Decision-Making Model
- Two 24-element vectors of decision variables:
- Objective function (4):
- The limiting conditions shall be equivalent to the boundary conditions:
5. Algorithms
5.1. The Microsoft Office Excel Solver
5.2. Other Implementations of Genetic Algorithms
5.3. Other Metaheuristics
6. Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.tecpro.com.au/technical-info/spray-engineering-info/ (accessed on 11 January 2022).
- Wawrzosek, J.; Parafiniuk, S. Optimization of the opening shape in slot spray nozzles in a field boom sprayer. Sustainability 2021, 13, 3291. [Google Scholar] [CrossRef]
- Sayinci, B. Effect of strainer type, spray pressure, and orifice size on the discharge coefficient of standard flat-fan nozzles. Turk. J. Agric. For. 2015, 39, 692–704. [Google Scholar] [CrossRef]
- Milanowski, M.; Subr, A.; Parafiniuk, S. Evaluation of Different Internal Designs of Hydraulic Nozzles under an Accelerated Wear Test. Appl. Sci. 2022, 12, 889. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive 2009/128EC Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticide. O. J. L 2009, 309, 71–86. [Google Scholar]
- Parafiniuk, S.; Tarasińska, J. Work simulation of the sprayer field beam with the use of R program. J. Cent. Eur. Agric. 2013, 14, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Parafiniuk, S.; Sawa, J.; Huyghebaert, B. The evaluation of the technical condition of the field toolbar of the spraying machine with the use of the method of survey of selected sprayers. Agric. Eng. 2011, 5, 207–215. [Google Scholar]
- Mawer, C.J.; Miller, P.C.H. Effect of roll angle and nozzle spray pattern on the uniformity of spray volume distribution below a boom. Crop Prot. 1989, 8, 217–222. [Google Scholar] [CrossRef]
- Declercq, J.; Huyghebaert, B.; Nuyttens, D. An overview of the defects on test field sprayers in Belgium. In Proceedings of the 3rd European Workshop on Standardised Procedure for the Inspection Sprayers in Europe–SPISE 3, Brno, Czech Republic, 22–24 September 2009; pp. 157–163, ISBN 978-3-930037-66-7. [Google Scholar]
- ISO 16119; In Agriculture and Forest Machinery–Environmental Requirements for Sprayers—Part 2. ISO: Geneva, Switzerland, 2013.
- Sawa, J.; Kubacki, K.; Huyghebaert, B. Equivalence of the criteria of assessing results of tests in legalizing crop sprayers. Agric. Eng. 2001, 4, 1. [Google Scholar]
- Kluza, P.; Kuna-Broniowska, I.; Parafiniuk, S. Modeling and Prediction of the Uniformity of Spray Liquid Coverage from Flat Fan Spray Nozzles. Sustainability 2019, 11, 6716. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.E. Genetic Algorithms in Search, Optimisation and Machine Learning; Addison-Wesley Pub. Co.: New York, NY, USA, 1989; ISBN 0201157675. Available online: https://ci.nii.ac.jp/naid/10000038763/ (accessed on 12 January 2022).
- The MathWorks, Inc. Genetic Algorithm. 2022. Available online: https://www.mathworks.com/discovery/genetic-algorithm.html (accessed on 8 January 2022).
- Excel Solver Online Help. Available online: https://www.solver.com/excel-solver-online-help (accessed on 11 January 2022).
- Available online: https://www.solver.com/excel-solver-how-integer-binary-and-alldifferent-constraints-affect-solving (accessed on 11 January 2022).
- Available online: https://www.solver.com/genetic-evolutionary-introduction (accessed on 11 January 2022).
- Available online: https://www.solver.com/excel-solver-change-options-all-solving-methods (accessed on 11 January 2022).
- Available online: https://www.solver.com/excel-solver-change-options-evolutionary-solving-method (accessed on 11 January 2022).
- Scrucca, L. A Quick Tour of GA. 2021. Available online: https://cran.r-project.org/web/packages/GA/vignettes/GA.html (accessed on 11 January 2022).
- Scrucca, L. GA: Genetic Algorithms. Version: 3.2.2. 2021. Available online: https://mran.microsoft.com/snapshot/2021-05-23/web/packages/GA/vignettes/GA.html (accessed on 10 January 2022).
- Scrucca, L. GA: A package for genetic algorithms in R. J. Stat. Softw. 2013, 53, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Scrucca, L. On some extensions to GA package: Hybrid optimisation, parallelisation and islands evolution. R J. 2017, 9, 187–206. [Google Scholar] [CrossRef] [Green Version]
- Christophe Lecoutre, C.; Szczepanski, N. PyCSP3 Modeling Combinatorial Constrained Problems in Python. 2021. Available online: https://www.ibm.com/docs/en/icos/12.9.0?topic=variables-all-different-constraint (accessed on 10 January 2022).
- Available online: https://www.solver.com/matlab-users-start-here (accessed on 10 January 2022).
- Available online: https://www.informs.org/ORMS-Today/OR-MS-Today-Software-Surveys/Linear-Programming-Software-Survey/Page-9 (accessed on 11 January 2022).
- Van Hoeve, W.J. The Alldifferent Constraint: A Survey. 2001. Available online: https://www.andrew.cmu.edu/user/vanhoeve/papers/alldiff.pdf (accessed on 11 January 2022).
- Available online: https://www.solver.com/solver-sdk-platform-solver-engines#Nonsmooth%20Optimization%20Problems (accessed on 12 January 2022).
- Kallioras, N.A.; Lagaros, N.D.; Avtzis, D.N. Pity beetle algorithm—A new metaheuristic inspired by the behavior of bark beetles. Adv. Eng. Softw. 2018, 121, 147–166. [Google Scholar] [CrossRef]
- Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: A comprehensive survey. Neural Comput. Appl. 2019, 32, 11195–11215. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 2022, 391, 114570. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E. Advanced Arithmetic Optimization Algorithm for solving mechanical engineering design problems. PLoS ONE 2021, 16, e0255703. [Google Scholar]
- Nematollahi, A.F.; Rahiminejad, A.; Vahidi, B. A novel meta-heuristic optimization method based on golden ratio in nature. Soft Comput. 2020, 24, 1117–1151. [Google Scholar] [CrossRef]
- Subr, A.K. Characteristics of Flat Fan Nozzles Spray to Ensure Sustainable Use of Pesticides on Field Crops. Ph.D. Thesis, University of Life Sciences in Lublin, Lublin, Poland, 2017. [Google Scholar]
- Huyghebaert, B. Verification of Measurement Methods of Flat Fan Nozzles Working Parameters Used in Agriculture. Ph.D. Thesis, University of Life Sciences in Lublin, Lublin, Poland, 2015. [Google Scholar]
- Parafiniuk, S. Conversion of Test Results Obtained for Single Spray Nozzles to Identify the Working Parameters of the Sprayer Boom; Libropolis: Lublin, Poland, 2013. [Google Scholar]
- Sawa, J.; Huyghebaert, B.; Parafiniuk, S. Testing device for a complex measurement of the performance nozzles. In Proceedings of the Fourth European Workshop on Standardised Procedure for the Inspection of Sprayers in Europe—SPISE 4—Lana, South Tyrol, Italy, 27–29 March 2012. [Google Scholar]
- Lenth, R.V. Package ‘emmeans’: Estimated Marginal Means, aka Least-Squares Means. R Package Version 2020, 1, 3. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical 477 Computing: Vienna, Austria, 2019. [Google Scholar]
- ASAE S471; ASAE Standards. Procedure for Measuring Sprayer Nozzle Wear Rate. 46th ed. ASABE: St. Joseph, MI, USA, 1999.
- Balsari, P.; Gil, E.; Marucco, P.; van de Zande, J.C.; Nuyttens, D.; Herbst, A.; Gallart, M. Field-crop-sprayer potential drift measured using test bench: Effects of boom height and nozzle type. Biosyst. Eng. 2017, 154, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Nuyttens, D.; Zwertvaegher, I.K.A.; Dekeyser, D. Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods. Biosyst. Eng. 2017, 154, 14–24. [Google Scholar] [CrossRef]
- Sayyadi, H.; Nazemi, A.H.; Sadraddini, A.A. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler. Biosyst. Eng. 2014, 119, 13–24. [Google Scholar] [CrossRef]
- Miller, P.C.H.; Ellis, M.B. Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers. Crop Prot. 2000, 19, 609–615. [Google Scholar] [CrossRef]
- Ozkan, H.E.; Paul, P.A.; Derksen, R.C.; Zhu, H. Influence of application equipment on deposition of spray droplets in wheat canopy. Aspects of Applied Biology. Int. Adv. Pestic. Appl. 2012, 114, 317–324. [Google Scholar]
- Maetens, W.; Nuyttens, D.; Sonck, B. Optimisation of sequence and orientation for used nozzles based on few, full boom distribution measurements. Commun. Agric. Appl. Biol. Sci. 2005, 70, 989–995. [Google Scholar]
- ISO 5682-1:1996; Equipment for Crop Protection—Spraying Equipment—Part 1: Test Methods for Sprayer Nozzles. International Standard; ISO: Geneva, Switzerland, 1996.
- He, Y.J.; Hua, H.M.; Li, X.F.; Shi, J.Z. Experimental Study on Spray Uniformity of Spraying Machinery. Adv. Mater. Res. 2013, 671, 1993–1997. [Google Scholar] [CrossRef]
- Bassani, A.; Rossi, F.; Fiorentini, C.; Garrido, G.D.; Reklaitis, G.V.; Bonadies, I.; Spigno, G. Model of Spray-Drying for Encapsulation of Natural Extracts. Comput. Aided Chem. Eng. 2020, 48, 355–360. [Google Scholar]
- Piñón-Balderrama, C.I.; Leyva-Porras, C.; Terán-Figueroa, Y.; Espinosa-Solís, V.; Álvarez-Salas, C.; Saavedra-Leos, M.Z. Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. Processes 2020, 8, 889. [Google Scholar] [CrossRef]
A Group of Nozzles | A Set of Selected Binary Values | The Number of the Next Algorithm Run | A Suboptimal Chromosome Encoding the Sequencing and Method of Mounting Slot Nozzles on the Boom of a Field Sprayer | The Value of the Coefficient of Variation [%] for Tables with Grooves of a Width | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.05 m | 0.10 m | |||||||||||||||||||||||||||||
Initial | Final | Initial | Final | |||||||||||||||||||||||||||
A | {0} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25.0% | 16.5% | 20.7% | 13.3% |
23 | 19 | 22 | 15 | 2 | 16 | 20 | 7 | 17 | 24 | 5 | 13 | 8 | 10 | 14 | 1 | 21 | 12 | 6 | 18 | 9 | 4 | 11 | 3 | |||||||
{0;1} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25.0% | 16.7% | 20.7% | 13.0% | |
3 | 4 | 5 | 13 | 21 | 19 | 2 | 8 | 6 | 9 | 22 | 10 | 7 | 20 | 1 | 12 | 15 | 16 | 14 | 17 | 24 | 18 | 11 | 23 | |||||||
B | {0} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21.9% | 13.7% | 16.3% | 11.1% |
11 | 8 | 14 | 10 | 22 | 15 | 24 | 18 | 4 | 16 | 20 | 19 | 3 | 23 | 13 | 17 | 2 | 5 | 6 | 9 | 7 | 12 | 21 | 1 | |||||||
{0} | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.7% | 13.6% | 11.1% | 11.1% | |
11 | 18 | 14 | 20 | 17 | 22 | 15 | 4 | 16 | 19 | 23 | 12 | 5 | 24 | 7 | 6 | 9 | 13 | 3 | 8 | 10 | 2 | 21 | 1 | |||||||
{0;1} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 21.9% | 13.8% | 16.3% | 11.6% | |
1 | 16 | 18 | 8 | 4 | 10 | 17 | 20 | 2 | 5 | 14 | 6 | 9 | 13 | 3 | 22 | 15 | 24 | 19 | 23 | 7 | 12 | 11 | 21 | |||||||
{0;1} | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.8% | 13.7% | 11.6% | 11.7% | |
11 | 16 | 19 | 13 | 7 | 20 | 2 | 22 | 5 | 24 | 10 | 17 | 15 | 8 | 4 | 18 | 14 | 6 | 9 | 3 | 12 | 23 | 21 | 1 | |||||||
C | {0} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.3% | 8.4% | 9.0% | 7.5% |
18 | 1 | 4 | 6 | 8 | 12 | 22 | 7 | 20 | 13 | 5 | 16 | 2 | 19 | 14 | 15 | 24 | 21 | 9 | 11 | 17 | 23 | 3 | 10 | |||||||
{0;1} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.3% | 8.8% | 9.0% | 8.1% | |
20 | 1 | 24 | 17 | 13 | 11 | 12 | 22 | 6 | 5 | 16 | 15 | 19 | 14 | 10 | 2 | 7 | 8 | 4 | 9 | 21 | 3 | 23 | 18 | |||||||
{0;1} | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8.8% | 8.8% | 8.1% | 8.1% | |
7 | 21 | 15 | 24 | 10 | 22 | 5 | 11 | 12 | 9 | 1 | 2 | 19 | 13 | 4 | 14 | 16 | 20 | 8 | 17 | 6 | 23 | 18 | 3 | |||||||
{0;1} | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 8.8% | 8.7% | 8.1% | 8.0% | |
18 | 21 | 15 | 24 | 10 | 22 | 5 | 11 | 12 | 9 | 1 | 2 | 19 | 13 | 4 | 14 | 16 | 20 | 8 | 17 | 6 | 23 | 7 | 3 | |||||||
D | {0} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.0% | 7.8% | 8.6% | 6.5% |
15 | 24 | 4 | 11 | 1 | 17 | 12 | 9 | 23 | 19 | 13 | 2 | 16 | 20 | 7 | 10 | 3 | 22 | 6 | 14 | 5 | 21 | 8 | 18 | |||||||
{0;1} | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.0% | 8.1% | 8.6% | 6.9% | |
15 | 10 | 13 | 12 | 2 | 6 | 4 | 1 | 7 | 9 | 3 | 19 | 14 | 11 | 17 | 20 | 23 | 22 | 16 | 24 | 5 | 21 | 18 | 8 |
Groups of Nozzles | Value of the Coefficient of Variation [%] | Spread [Percentage Points] | Quotient [%]: of the Maximum Value and the Minimum Value | The Quotient [%]: of the Spread and the Minimum Value | |||
---|---|---|---|---|---|---|---|
Initial | Maximum | Minimum | |||||
Old | A | 20.7% | 25.4% | 13.0% | 12.4 | 195.7% | 95.7% |
B | 16.3% | 20.6% | 11.1% | 9.4 | 184.7% | 84.7% | |
New | C | 9.0% | 11.5% | 7.5% | 4.0 | 152.5% | 52.5% |
D | 8.6% | 10.4% | 6.5% | 3.9 | 160.2% | 60.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrzosek, J.; Parafiniuk, S. The Use of the Permutation Algorithm for Suboptimising the Position of Used Nozzles on the Field Sprayer Boom. Appl. Sci. 2022, 12, 4359. https://doi.org/10.3390/app12094359
Wawrzosek J, Parafiniuk S. The Use of the Permutation Algorithm for Suboptimising the Position of Used Nozzles on the Field Sprayer Boom. Applied Sciences. 2022; 12(9):4359. https://doi.org/10.3390/app12094359
Chicago/Turabian StyleWawrzosek, Jacek, and Stanisław Parafiniuk. 2022. "The Use of the Permutation Algorithm for Suboptimising the Position of Used Nozzles on the Field Sprayer Boom" Applied Sciences 12, no. 9: 4359. https://doi.org/10.3390/app12094359
APA StyleWawrzosek, J., & Parafiniuk, S. (2022). The Use of the Permutation Algorithm for Suboptimising the Position of Used Nozzles on the Field Sprayer Boom. Applied Sciences, 12(9), 4359. https://doi.org/10.3390/app12094359