Modulation Characteristics of High-Speed Transistor Lasers
Abstract
:1. Introduction
2. Inherent Advantages of TL
2.1. Independent Control of Output Wavelength and Power
2.2. Drastically Reduced Effective Carrier Recombination Lifetime
3. Modulation Characteristics of TL
3.1. Optimizations of QW
3.1.1. Number of QWs and Cavity Length
3.1.2. Location of QW
3.1.3. Main Excited State of QW as a Function of Current and Temperature
3.2. Optimization of Each Layer in the Base Region
3.2.1. Base Thickness and Number of QWs
3.2.2. Increasing the Potential of the SCH Layer Facilitates Carrier Transport
3.2.3. Increased Carrier Injection Efficiency through SCH Tunneling
3.3. Intracavity Photon-Assisted Tunneling
3.4. Auxiliary for External Circuits
3.4.1. Increase the Bandwidth by Applying the Base Auxiliary Signal
3.4.2. Predistortion Network
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, J.; Bar-Chaim, N.; Chen, P.C.; Margalit, S.; Ury, I.; Wilt, D.; Yust, M.; Yariv, A. A monolithic integration of GaAs/GaAlAs bipolar transistor and heterostructure laser. Appl. Phys. Lett. 1980, 37, 211–213. [Google Scholar] [CrossRef] [Green Version]
- Shibata, J.; Nakao, I.; Sasai, Y.; Kimura, S.; Hase, N.; Serizawa, H. Monolithic integration of an InGaAsP/InP laser diode with heterojunction bipolar transistors. Appl. Phys. Lett. 1984, 45, 191–193. [Google Scholar] [CrossRef] [Green Version]
- Mori, Y.; Shibata, J.; Sasai, Y.; Serizawa, H.; Kajiwara, T. Operation principle of the InGaAsP/InP laser transistor. Appl. Phys. Lett. 1985, 47, 649–651. [Google Scholar] [CrossRef]
- Shibata, J.; Mori, Y.; Sasai, Y.; Hase, N.; Serizawa, H.; Kajiwara, T. Fundamental characteristics of an ingaasp/inp laser transistor. Electron. Lett. 1985, 21, 98–100. [Google Scholar] [CrossRef]
- Holonyak, N.; Feng, M. The transistor laser. IEEE Spectr. 2006, 43, 50–55. [Google Scholar] [CrossRef]
- Khorasani, M.; Ghasemi, A.; Rolfe, B.; Gibson, I. Additive manufacturing a powerful tool for the aerospace industry. Rapid Prototyp. J. 2022, 28, 87–100. [Google Scholar] [CrossRef]
- Hung, C.-H.; Turk, T.; Sehhat, M.H.; Leu, M.C. Development and experimental study of an automated laser-foil-printing additive manufacturing system. Rapid Prototyp. J. 2022, ahead-of-print. [Google Scholar] [CrossRef]
- Khan, H.M.; Waqar, S.; Koç, E. Evolution of temperature and residual stress behavior in selective laser melting of 316l stainless steel across a cooling channel. Rapid Prototyp. J. 2022, ahead-of-print. [Google Scholar] [CrossRef]
- Linares, J.-m.; Chaves-Jacob, J.; Lopez, Q.; Sprauel, J.-M. Fatigue life optimization for 17-4ph steel produced by selective laser melting. Rapid Prototyp. J. 2022, ahead-of-print. [Google Scholar] [CrossRef]
- Giganto, S.; Martínez-Pellitero, S.; Cuesta, E.; Zapico, P.; Barreiro, J. Proposal of design rules for improving the accuracy of selective laser melting (slm) manufacturing using benchmarks parts. Rapid Prototyp. J. 2022, ahead-of-print. [Google Scholar] [CrossRef]
- Then, H.W.; Feng, M.; Holonyak, N.; Wu, C.H. Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping. Appl. Phys. Lett. 2007, 91, 033505. [Google Scholar] [CrossRef]
- Winoto, A.; Qiu, J.; Wu, D.; Feng, M. Transistor Laser-Integrated Photonics for Optical Logic: Unlocking Unique Electro-Optical Integration Potential to Open Up New Possibilities for Logic Processors. IEEE Nanotechnol. Mag. 2019, 13, 27–34. [Google Scholar] [CrossRef]
- Tan, F.; Bambery, R.; Feng, M.; Holonyak, N. Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation. Appl. Phys. Lett. 2011, 99, 061105. [Google Scholar] [CrossRef]
- Wu, M.K. Development of Vertical Cavity Transistor Laser and Microcavity Laser. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA, 2014. Available online: http://hdl.handle.net/2142/49650 (accessed on 14 January 2022).
- Sasada, N.; Nakajima, T.; Sekino, Y.; Nakanishi, A.; Mukaikubo, M.; Ebisu, M.; Mitaki, M.; Hayakawa, S.; Naoe, K. Wide-Temperature-Range (25–80 °C) 53-Gbaud PAM4 (106-Gb/s) Operation of 1.3-μM Directly Modulated DFB Lasers for 10-km Transmission. J. Lightwave Technol. 2019, 37, 1686–1689. [Google Scholar] [CrossRef]
- Shahin, M.; Ma, K.; Abbasi, A.; Roelkens, G.; Morthier, G. 45 Gb/s Direct Modulation of Two-Section InP-on-Si DFB Laser Diodes. IEEE Photonics Technol. Lett. 2018, 30, 685–687. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ryou, J.-H.; Dupuis, R.D.; Dixon, F.; Feng, M.; Holonyak, N. InP/InAlGaAs light-emitting transistors and transistor lasers with a carbon-doped base layer. J. Appl. Phys. 2011, 109, 063106. [Google Scholar] [CrossRef]
- Taylor, J.; Tolstikhin, V. Intervalence band absorption in InP and related materials for optoelectronic device modeling. J. Appl. Phys. 2000, 87, 1054–1059. [Google Scholar] [CrossRef]
- Feng, M.; Holonyak, N.; Chan, R. Quantum-well-base heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 2004, 84, 1952–1954. [Google Scholar] [CrossRef]
- Chan, R.; Feng, M.; Holonyak, N.; Walter, G. Microwave operation and modulation of a transistor laser. Appl. Phys. Lett. 2005, 86, 131114. [Google Scholar] [CrossRef]
- Feng, M.; Holonyak, N.; Walter, G.; Chan, R. Room temperature continuous wave operation of a heterojunction bipolar transistor laser. Appl. Phys. Lett. 2005, 87, 131103. [Google Scholar] [CrossRef]
- Zhang, P.N. Research on Mid-Infared Transistor-Injected Quantum Cascade Laser and Its Characteristics. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2020. [Google Scholar] [CrossRef]
- Feng, M.; Then, H.W.; Holonyak, N.; Walter, G.; James, A. Resonance-free frequency response of a semiconductor laser. Appl. Phys. Lett. 2009, 95, 033509. [Google Scholar] [CrossRef]
- Feng, M.; Holonyak, N.; Then, H.W.; Walter, G. Charge control analysis of transistor laser operation. Appl. Phys. Lett. 2007, 91, 053501. [Google Scholar] [CrossRef]
- Li, Y.; Leburton, J.-P. Base transport factor and frequency response of transistor lasers. J. Appl. Phys. 2019, 126, 153103. [Google Scholar] [CrossRef]
- Taghavi, I.; Kaatuzian, H.; Leburton, J.-P. Multiple versus Single Quantum Well Transistor Laser Performances. In Proceedings of the Advanced Photonics Congress, Colorado Springs, Colorado, 17 June 2012; p. IM4B.5. [Google Scholar] [CrossRef]
- Lu, D.; Yang, Q.L.; Wang, H.; He, Y.M.; Qi, H.F.; Wang, H.; Zhao, L.J.; Wang, W. Review of Semiconductor Distributed Feedback Lasers in the Optical Communication Band. Chin. J. Lasers 2020, 47, 0701001. [Google Scholar] [CrossRef]
- Xu, G.; Huang, C.; Liu, Q.; Liu, R.; Chai, G.; Duan, Z. One-dimensional numerical analysis of transistor lasers. Opt. Quantum Electron. 2012, 45, 87–96. [Google Scholar] [CrossRef]
- Nagarajan, R.; Ishikawa, M.; Fukushima, T.; Geels, R.S.; Bowers, J.E. High-speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 1992, 28, 1990–2008. [Google Scholar] [CrossRef]
- Taghavi, I.; Kaatuzian, H.; Leburton, J.-P. Performance Optimization of Multiple Quantum Well Transistor Laser. IEEE J. Quantum Electron. 2013, 49, 426–435. [Google Scholar] [CrossRef]
- Taghavi, I.; Kaatuzian, H.; Leburton, J.-P. Bandwidth enhancement and optical performances of multiple quantum well transistor lasers. Appl. Phys. Lett. 2012, 100, 231114. [Google Scholar] [CrossRef] [Green Version]
- Kaatuzian, H.; Taghavi, I.; Danayee, M.; IEEE. Dependence of Transistor Laser Optical Frequency Response on Quantum-Well Position. In Proceedings of the International Conference on Recent Advances in Microwave Theory and Applications, Jaipur, India, 21–24 November 2008; pp. 406–409. [Google Scholar] [CrossRef]
- Taghavi, I.; Kaatuzian, H. Gain-bandwidth trade-off in a transistor laser: Quantum well dislocation effect. Opt. Quant. Electron. 2010, 41, 481–488. [Google Scholar] [CrossRef]
- Kaatuzian, H.; Taghavi, I.; Danaie, M.; AOE. Effects of Quantum-Well Displacement on Optical Frequency Response of a Transistor Laser. In Proceedings of the AOE 2008: Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, Shanghai, China, 30 October–2 November 2008. [Google Scholar]
- Habib, M.A.; Das, S.; Ullah, S.M.; Rafique, S. Optimal quantum well width and the effect of quantum well position on the performance of transistor lasers. Optoelectron. Lett. 2013, 9, 18–20. [Google Scholar] [CrossRef]
- Taghavi, I.; Kaatuzian, H. A numerical study on base geometry of transistor laser: Quantum-well location effect. In Proceedings of the Electrical Engineering, Bandung, Indonesia, 17–19 July 2011. [Google Scholar]
- Taghavi, I.; Aa Tuzian, H.K. Optical Bandwidth Optimization in a Transistor Laser by Quantum Well Location Effect. In Proceedings of the Photonics and Optoelectronic (SOPO), Chengdu, China, 19–21 June 2010. [Google Scholar] [CrossRef]
- Basu, R.; Mukhopadhyay, B.; Basu, P.K. Modeling Resonance-Free Modulation Response in Transistor Lasers with Single and Multiple Quantum Wells in the Base. IEEE Photon. J. 2012, 4, 1572–1581. [Google Scholar] [CrossRef]
- Then, H.W.; Feng, M.; Holonyak, N. Optical bandwidth enhancement by operation and modulation of the first excited state of a transistor laser. Appl. Phys. Lett. 2007, 91, 183505. [Google Scholar] [CrossRef]
- Feng, M.; Holonyak, N.; James, A.; Cimino, K.; Walter, G.; Chan, R. Carrier lifetime and modulation bandwidth of a quantum well AlGaAs∕InGaP∕GaAs∕InGaAs transistor laser. Appl. Phys. Lett. 2006, 89, 113504. [Google Scholar] [CrossRef]
- Bambery, R.; Wang, C.; Dallesasse, J.M.; Feng, M.; Holonyak, N. Effect of the energy barrier in the base of the transistor laser on the recombination lifetime. Appl. Phys. Lett. 2014, 104, 081117. [Google Scholar] [CrossRef]
- Tan, F.; Bambery, R.; Feng, M.; Holonyak, N. Transistor Laser with 13.5-Gb/s Error-Free Data Transmission. IEEE Photonics Technol. Lett. 2014, 26, 1542–1545. [Google Scholar] [CrossRef]
- Bambery, R.; Wang, C.Y.; Tan, F.; Feng, M.; Holonyak, N. Single Quantum-Well Transistor Lasers Operating Error-Free at 22 Gb/s. IEEE Photonics Technol. Lett. 2015, 27, 600–603. [Google Scholar] [CrossRef]
- Feng, M.; Holonyak, N.; James, A. Temperature dependence of a high-performance narrow-stripe (1 μM) single quantum-well transistor laser. Appl. Phys. Lett. 2011, 98, 051107. [Google Scholar] [CrossRef]
- Qiao, L.J.; Liang, S.; Han, J.J. Continuous-wave operation up to 20 degrees C of deep-ridge npn-InGaAsP/InP multiple quantum well transistor laser emitting at 1.5-mum wavelength. Opt. Express 2015, 23, 11388–11393. [Google Scholar] [CrossRef]
- Liang, S.; Kong, D.H.; Zhu, H.L.; Zhao, L.J.; Pan, J.Q.; Wang, W. InP-based deep-ridge NPN transistor laser. Opt. Lett. 2011, 36, 3206–3208. [Google Scholar] [CrossRef]
- Kaatuzian, H.; Mojaver, H.R.; Taghavi, I. Optical Modulation Bandwidth Enhancement of Heterojunction Bipolar Transistor Lasers Using Base Width Variation. In Proceedings of the 2011 Numerical Simulation of Optoelectronic Devices, Rome, Italy, 5–8 September 2012. [Google Scholar]
- Mojaver, H.R.; Kaatuzian, H. Analysis and improvement of optical frequency response in a long wavelength transistor laser. Opt. Quantum Electron. 2011, 44, 45–54. [Google Scholar] [CrossRef]
- Farjadian, M.R.; Kaatuzian, H.; Taghavi, I. The Effects of Base width variation on Resonance Behavior of Double-Hetero Structure Long Wavelength Transistor Laser. In Proceedings of the 22nd Iranian Conference on Electrical Engineering, Tehran, Iran, 5 January 2015. [Google Scholar] [CrossRef]
- Farjadian, M.R.; Kaatuzian, H.; Taghavi, I. Theoretical analysis on optoelectronic performances of long wavelength transistor lasers: Base width variation effects. Opt. Quantum Electron. 2014, 46, 871–881. [Google Scholar] [CrossRef]
- Hosseini, M.; Kaatuzian, H.; Taghavi, I. Design and analysis of GRIN-SCH-SQW transistor laser. In Proceedings of the 24th Iranian Conference on Electrical Engineering, Shiraz, Iran, 10 October 2016. [Google Scholar] [CrossRef]
- Hosseini, M.; Kaatuzian, H.; Taghavi, I. Graded index separate confinement heterostructure transistor laser: Analysis of various confinement structures. Chin. Opt. Lett. 2017, 15, 062501. [Google Scholar] [CrossRef]
- Hosseini, M.; Kaatuzian, H.; Taghavi, I. Investigation of confining layers effects on optoelectronic performances of transistor laser. In Proceedings of the 25th Iranian Conference on Electrical Engineering, Tehran, Iran, 20 July 2017. [Google Scholar] [CrossRef]
- Hosseini, M.; Kaatuzian, H.; Taghavi, I.; Ghodsi, H. Efficient carrier transport in GRIN-SCH transistor lasers. Quantum Electron. 2019, 49, 391–398. [Google Scholar] [CrossRef]
- Chen, Y.; Wartak, M.S.; Lu, H.; Makino, T. Investigation of carrier transport effects in multiple-quantum-well lasers. J. Appl. Phys. 1995, 78, 5515–5517. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Singh, J.; Yoon, H.; Zhang, X.K.; Gutierrez-Aitken, A.; Lam, Y. Tunneling injection lasers: A new class of lasers with reduced hot carrier effects. IEEE J. Quantum Electron. 1996, 32, 1620–1629. [Google Scholar] [CrossRef]
- Rusek, P.; Wartak, M.S.; Weetman, H. Modulation response of tunneling injection laser: Analytical approach. IEEE J. Quantum Electron. 1998, 84, 5419–5423. [Google Scholar] [CrossRef]
- Basu, R.; Mukhopadhyay, B.; Basu, P.K. Performance Study of a Tunnel Injection Transistor Laser with Multiple Quantum-Wells in the Base. In Proceedings of the 12th International Conference on Fiber Optics and Photonics, Kharagpur, India, 13 December 2014. [Google Scholar] [CrossRef]
- Kumar, N.; Mukhopadhyay, B.; Basu, R. Tunnel injection transistor laser for optical interconnects. Opt. Quantum Electron. 2018, 50, 160. [Google Scholar] [CrossRef]
- Vinodhini, S.V.; Piramasubramanian, S. Effect of tunneling probability on the distortion characteristics of tunnel injection transistor laser. Opt. Commun. 2020, 460, 1–8. [Google Scholar] [CrossRef]
- Feng, M.; Holonyak, N.; Then, H.W.; Wu, C.H.; Walter, G. Tunnel junction transistor laser. Appl. Phys. Lett. 2009, 94, 041118. [Google Scholar] [CrossRef]
- James, A.; Walter, G.; Feng, M.; Holonyak, N. Photon-assisted breakdown, negative resistance, and switching in a quantum-well transistor laser. Appl. Phys. Lett. 2007, 90, 091109. [Google Scholar] [CrossRef]
- James, A.; Holonyak, N.; Feng, M.; Walter, G. Franz–Keldysh Photon-Assisted Voltage-Operated Switching of a Transistor Laser. IEEE Photonics Technol. Lett. 2007, 19, 680–682. [Google Scholar] [CrossRef]
- Feng, M.; Qiu, J.; Wang, C.Y.; Holonyak, N. Intra-cavity photon-assisted tunneling collector-base voltage-mediated electron-hole spontaneous-stimulated recombination transistor laser. J. Appl. Phys. 2016, 119, 084502. [Google Scholar] [CrossRef]
- Then, H.W.; Feng, M.; Holonyak, N. The Transistor Laser: Theory and Experiment. Proc. IEEE 2013, 101, 2271–2298. [Google Scholar] [CrossRef]
- Iezekiel, S.; Christou, A. Microwave Photonic Links Based on Transistor Lasers: Voltage Modulation versus Current Modulation. In Proceedings of the International Topical Meeting on Microwave Photonics and the 2014 9th Asia-Pacific Microwave Photonics Conference, Hokkaido, Japan, 22 December 2014. [Google Scholar] [CrossRef]
- Chang, C.H.; Chang, S.W.; Wu, C.H. Theory for voltage modulation of transistor lasers using Franz-Keldysh absorption in the presence of optoelectronic feedback. Opt. Express 2016, 24, 25515–25527. [Google Scholar] [CrossRef]
- Ramya, R.; Piramasubramanian, S. Effect of Franz–Keldysh absorption on the short optical pulse generation in Transistor Laser. Opt. Commun. 2020, 474, 1–8. [Google Scholar] [CrossRef]
- Tung, C.T.; Chang, S.W.; Wu, C.H. High Speed Data Transmission under Voltage Modulation of Transistor Lasers. In Proceedings of the 23rd Opto-Electronics and Communications Conference, Jeju, Korea, 6 June 2019. [Google Scholar] [CrossRef]
- Tung, C.T.; Chang, C.H.; Chang, S.W.; Wu, C.H. Pulse compression irrespective of fiber dispersion using chirp of transistor lasers. Opt. Lett. 2019, 44, 2109–2112. [Google Scholar] [CrossRef]
- Feng, M.; Qiu, J.; Wang, C.H.; Holonyak, N. Tunneling modulation of a quantum-well transistor laser. J. Appl. Phys. 2016, 120, 084502. [Google Scholar] [CrossRef]
- Tung, C.T.; Chang, S.W.; Wu, C.H. Chirp-free optical-signal generation using dual-and-direct current-voltage modulation of transistor lasers. Opt. Lett. 2020, 45, 2474–2477. [Google Scholar] [CrossRef]
- Tung, C.T.; Lin, H.Y.; Chang, S.W.; Wu, C.H. Analytical Modeling of Tunnel-Junction Transistor Lasers. IEEE J. Sel. Top. Quantum Electron. 2016, 24, 25515–25527. [Google Scholar] [CrossRef]
- Then, H.W.; Walter, G.; Feng, M.; Holonyak, N. Optical bandwidth enhancement of heterojunction bipolar transistor laser operation with an auxiliary base signal. Appl. Phys. Lett. 2008, 93, 091109. [Google Scholar] [CrossRef]
- Then, H.W.; Feng, M.; Holonyak, N. Bandwidth extension by trade-off of electrical and optical gain in a transistor laser: Three-terminal control. Appl. Phys. Lett. 2009, 94, 013509. [Google Scholar] [CrossRef]
- Vinodlhini, S.V.; Piramasubramanian, S.; Madhan, M.G.; Sandhiya, M. Analysis of distortion reduction in 1.3 μM transistor laser using Schottky diode based predistortion network. Optik 2007, 231, 051107. [Google Scholar] [CrossRef]
- Bambery, R.; Tan, F.; Feng, M.; Dallesasse, J.M.; Holonyak, N. Voltage and current modulation at 20 Gb/s of a transistor laser at room temperature. IEEE Photonics Technol. Lett. 2013, 25, 859–862. [Google Scholar] [CrossRef]
- Kobayashi, W.; Ito, T.; Yamanaka, T.; Fujisawa, T.; Shibata, Y.; Kurosaki, T.; Kohtoku, M.; Tadokoro, T.; Sanjoh, H. 50-Gb/s direct modulation of a 1.3-mu m InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 500908–1500908. [Google Scholar] [CrossRef]
- Nakahara, K.; Wakayama, Y.; Kitatani, T.; Taniguchi, T.; Fukamachi, T.; Sakuma, Y.; Tanaka, S. Direct modulation at 56 and 50 Gb/s of 1.3-μM InGaAlAs Ridge-Shaped-BH DFB lasers. IEEE Photonics Technol. Lett. 2015, 27, 534–536. [Google Scholar] [CrossRef]
- Matsui, Y.; Schatz, R.; Pham, T.; Ling, W.A.; Carey, G.; Daghighian, H.M.; Adams, D.; Sudo, T.; Roxlo, C. 55 GHz bandwidth distributed reflector laser. J. Lightwave Technol. 2017, 35, 397–403. [Google Scholar] [CrossRef]
Year | Research Institution | Optimization Method | Performance Improvement | Research Method | Reference |
---|---|---|---|---|---|
2008 | UIUC | Base Area AC Signal Auxiliary Modulation | The modulation bandwidth of InGaAs/GaAs-based TL is increased from 10.22 GHz to 22 GHz | Experiments and Simulations | [74] |
2013 | UIUC | Voltage modulation | The first voltage modulation TL, achieving 20 Gb/s transfer rate at room temperature | Experimental data | [77] |
2013 | Shenzhen University | Structural optimization | InP-based TL 40 Gb/s transfer rate | Simulation analysis | [28] |
2014 | University of Calcutta | tunnel injection | InGaAs/GaAs-based TL bandwidth increased to 44.21 GHz | Simulation analysis | [58] |
2015 | UIUC | Intracavity Photon Assisted Tunneling | InGaAs/GaAs-based TL achieves 10.4 GHz bandwidth and transfer rate of 22 Gb/s | Experimental data | [43] |
2019 | Amirkabir University of Technology | SCH layer optimization | InGaAs/GaAs-based TL bandwidth increased to 26 GHz | Simulation analysis | [54] |
2020 | National Taiwan University | Voltage modulation; chirp compensation | 0.98 μM TL transfer rate increased to 10 Gb/s | Simulation analysis | [72] |
2021 | Anna University | Adding Schottky diodes to suppress distortion | 1.3 μM TL bandwidth increased to 13.8 GHz | Simulation analysis | [76] |
Year | Research Institution | Performance Improvement | Wavelength/(μM) | Reference |
---|---|---|---|---|
2013 | NTT | 34 GHz, 50 Gb/s data transmission through integrated passive waveguide structure | 1.3 | [78] |
2015 | Hitachi | Asymmetric grating maintains single-mode operation and achieves 29.5 GHz bandwidth | 1.3 | [79] |
2017 | Finisar | A bandwidth-stretching laser based on a distributed reflector structure is presented. Laser bandwidth up to 55 GHz | 1.3 | [80] |
2018 | Ghent University | Two-section heterogeneously integrated InP-on-Si DFB laser diodes enhanced modulation bandwidth to 25 GHz | 1.3 | [16] |
2019 | Oclaro | Zn doping improves differential gain while optimizing the SCH layer and QW to improve the optical confinement factor in the active region to achieve a 34.2 GHz bandwidth | 1.3 | [15] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Jia, P.; Lei, Y.; Cui, Q.; Chen, Y.; Qin, L.; Liang, L.; Qiu, C.; Song, Y.; Wang, Y.; et al. Modulation Characteristics of High-Speed Transistor Lasers. Appl. Sci. 2022, 12, 4475. https://doi.org/10.3390/app12094475
Fan L, Jia P, Lei Y, Cui Q, Chen Y, Qin L, Liang L, Qiu C, Song Y, Wang Y, et al. Modulation Characteristics of High-Speed Transistor Lasers. Applied Sciences. 2022; 12(9):4475. https://doi.org/10.3390/app12094475
Chicago/Turabian StyleFan, Lutai, Peng Jia, Yuxin Lei, Qiang Cui, Yongyi Chen, Li Qin, Lei Liang, Cheng Qiu, Yue Song, Yubing Wang, and et al. 2022. "Modulation Characteristics of High-Speed Transistor Lasers" Applied Sciences 12, no. 9: 4475. https://doi.org/10.3390/app12094475
APA StyleFan, L., Jia, P., Lei, Y., Cui, Q., Chen, Y., Qin, L., Liang, L., Qiu, C., Song, Y., Wang, Y., Ning, Y., & Wang, L. (2022). Modulation Characteristics of High-Speed Transistor Lasers. Applied Sciences, 12(9), 4475. https://doi.org/10.3390/app12094475