Advanced Equipment Development and Clinical Application in Neurorehabilitation for Spinal Cord Injury: Historical Perspectives and Future Directions
Abstract
:1. Introduction
- FES for SCI
- FES for upper limb paralysis
- 2.2.
- FES for lower limb paralysis
- 2.3.
- FES rowing and cycling
- Robotic rehabilitation with FES for SCI
- Future directions of FES
- Conclusion
2. FES for SCI
2.1. FES for Upper Limb Paralysis
2.2. FES for Lower Limb Paralysis
2.3. FES Rowing and Cycling
2.3.1. FES Rowing
2.3.2. FES Cycling
3. Robotic Rehabilitation with FES for SCI
4. Future Directions of FES for SCI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B.B.; Cripps, R.A.; Fitzharris, M.; Wing, P.C. The global map for traumatic spinal cord injury epidemiology: Update 2011, global incidence rate. Spinal Cord 2014, 52, 110–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jazayeri, S.B.; Beygi, S.; Shokraneh, F.; Hagen, E.M.; Rahimi-Movaghar, V. Incidence of traumatic spinal cord injury world-wide: A systematic review. Eur. Spine J. 2015, 24, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Tator, C.H.; Duncan, E.G.; Edmonds, V.E.; Lapczak, L.I.; Andrews, D.F. Changes in epidemiology of acute spinal cord injury from 1947 to 1981. Surg. Neurol. 1993, 40, 207–215. [Google Scholar] [CrossRef]
- Roche, S.J.; Sloane, P.A.; McCabe, J.P. Epidemiology of spine trauma in an Irish regional trauma unit: A 4-year study. Injury 2008, 39, 436–442. [Google Scholar] [CrossRef]
- Jain, N.B.; Ayers, G.D.; Peterson, E.N.; Harris, M.B.; Morse, L.; O’Connor, K.C.; Garshick, E. Traumatic spinal cord injury in the United States, 1993–2012. JAMA 2015, 313, 2236–2243. [Google Scholar] [CrossRef]
- Miyakoshi, N.; Suda, K.; Kudo, D.; Sakai, H.; Nakagawa, Y.; Mikami, Y.; Suzuki, S.; Tokioka, T.; Tokuhiro, A.; Takei, H.; et al. A nationwide survey on the incidence and characteristics of traumatic spinal cord injury in Japan in 2018. Spinal Cord 2021, 59, 626–634. [Google Scholar] [CrossRef]
- Wirz, M.; Dietz, V. European Multicenter Study of Spinal Cord Injury (EMSCI) Network. Recovery of sensorimotor function and activities of daily living after cervical spinal cord injury: The influence of age. J. Neurotrauma 2015, 32, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Myers, J.; Lee, M.; Kiratli, J. Cardiovascular disease in spinal cord injury: An overview of prevalence, risk, evaluation, and management. Am. J. Phys. Med. Rehabil. 2007, 86, 142–152. [Google Scholar] [CrossRef]
- Barbiellini Amidei, C.; Salmaso, L.; Bellio, S.; Saia, M. Epidemiology of traumatic spinal cord injury: A large population-based study. Spinal Cord 2022, 8, 1–8. [Google Scholar] [CrossRef]
- Nudo, R.J.; Wise, B.M.; SiFuentes, F.; Milliken, G.W. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996, 272, 1791–1794. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.A.; Lee, T.D. Motor Leaning and Performance: From Principles to Application, 5th ed.; Human Kinetics: Champaign, IL, USA, 2013; pp. 256–284. [Google Scholar]
- Fang, C.Y.; Lien, A.S.; Tsai, J.L.; Yang, H.C.; Chan, H.L.; Chen, R.S.; Chang, Y.J. The effect and dose-response of functional electrical stimulation cycling training on spasticity in individuals with spinal cord injury: A systematic review with meta-analysis. Front. Physiol. 2021, 12, 756200. [Google Scholar] [CrossRef] [PubMed]
- Bekhet, A.H.; Jahan, A.M.; Bochkezanian, V.; Musselman, K.E.; Elsareih, A.A.; Gorgey, A.S. Effects of electrical stimulation training on body composition parameters after spinal cord injury: A systematic review. Arch. Phys. Med. Rehabil. 2021; in press. [Google Scholar] [CrossRef] [PubMed]
- Cheung, E.Y.Y.; Ng, T.K.W.; Yu, K.K.K.; Kwan, R.L.C.; Cheing, G.L.Y. Robot-assisted training for people with spinal cord injury: A meta-analysis. Arch. Phys. Med. Rehabil. 2017, 98, 2320–2331.e12. [Google Scholar] [CrossRef] [PubMed]
- Athanasiou, A.; Klados, M.A.; Pandria, N.; Foroglou, N.; Kavazidi, K.R.; Polyzoidis, K.; Bamidis, P.D. A systematic review of investigations into functional brain connectivity following spinal cord injury. Front. Hum. Neurosci. 2017, 11, 517. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato, C.; Gunduz, M.A.; Palipana, D.; Wu, J.; Grant, G.; Hall, S.; Dennison, R.; Zafonte, R.D.; Lloyd, D.G.; Teng, Y.D. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions. Exp. Neurol. 2021, 339, 113612. [Google Scholar] [CrossRef] [PubMed]
- Assinck, P.; Duncan, G.J.; Hilton, B.J.; Plemel, J.R.; Tetzlaff, W. Cell transplantation therapy for spinal cord injury. Nat. Neurosci. 2017, 20, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Assunção Silva, R.C.; Pinto, L.; Salgado, A.J. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med. Res. Rev. 2021, 42, 850–896. [Google Scholar] [CrossRef]
- Honmou, O.; Yamashita, T.; Morita, T.; Oshigiri, T.; Hirota, R.; Iyama, S.; Kato, J.; Sasaki, Y.; Ishiai, S.; Ito, Y.M.; et al. Intravenous infusion of auto serum-expanded autologous mesenchymal stem cells in spinal cord injury patients: 13 case series. Clin. Neurol. Neurosurg. 2021, 203, 106565. [Google Scholar] [CrossRef]
- Lai, B.Q.; Zeng, X.; Han, W.T.; Che, M.T.; Ding, Y.; Li, G.; Zeng, Y.S. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021, 279, 121211. [Google Scholar] [CrossRef]
- Liberson, W.T.; Holmquest, H.J.; Scot, D.; Dow, M. Functional electrotherapy; Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 1961, 42, 101–105. [Google Scholar]
- Long, C. An electrophysiologic splint for the hand. Arch. Phys. Med. Rehabil. 1963, 44, 499–503. [Google Scholar] [PubMed]
- Shimada, Y.; Sato, K.; Abe, E.; Kagaya, H.; Ebata, K.; Oba, M.; Sato, M. Clinical experience of functional electrical stimulation in complete paraplegia. Spinal Cord 1996, 34, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Popovic, M.R.; Kapadia, N.; Zivanovic, V.; Furlan, J.C.; Craven, B.C.; McGillivray, C. Functional electrical stimulation therapy of voluntary grasping versus only conventional rehabilitation for patients with subacute incomplete tetraplegia: A randomized clinical trial. Neurorehabil. Neural Repair 2011, 25, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, N.; Masani, K.; Catharine Craven, B.; Giangregorio, L.M.; Hitzig, S.L.; Richards, K.; Popovic, M.R. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency. J. Spinal Cord Med. 2014, 37, 511–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, R.; Qu, M.; Yuan, Y.; Lin, M.; Liu, T.; Huang, W.; Gao, J.; Zhang, M.; Yu, X. Clinical Benefit of Rehabilitation Training in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spine 2021, 46, E398–E410. [Google Scholar] [CrossRef]
- Peckham, P.H.; Keith, M.W.; Freehafer, A.A. Restoration of functional control by electrical stimulation in the upper extremity of the quadriplegic patient. J. Bone Jt. Surg. Am. 1988, 70, 144–148. [Google Scholar] [CrossRef]
- Handa, Y.; Hoshimiya, N. Functional electrical stimulation for the control of the upper extremities. Med. Prog. Technol. 1987, 12, 51–63. [Google Scholar]
- Matsunaga, T.; Shimada, Y.; Sato, M.; Chida, S.; Hatakeyama, K.; Misawa, M. Clinical experience of functional electrical stimulation for restoration of tetraplegic hand function. Akita J. Med. 2007, 34, 137–144. [Google Scholar]
- Alon, G.; McBride, K. Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch. Phys. Med. Rehabil. 2003, 84, 119–124. [Google Scholar] [CrossRef]
- Shimada, Y.; Matsunaga, T.; Kudo, D.; Saito, K.; Iwami, T. Neuroscience of spinal and spinal cord diseases. Functional electrical stimulation. Orthop. Surg. Traumatol. 2017, 60, 617–621. (In Japanese) [Google Scholar]
- Kapadia, N.; Zivanovic, V.; Popovic, M.R. Restoring voluntary grasping function in individuals with incomplete chronic spinal cord injury: Pilot study. Top. Spinal. Cord Inj. Rehabil. 2013, 19, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.; Raza, W.A.; Jamil, F.; Caley, R.; O’Connor, R.J. Functional electrical stimulation for the upper limb in tetraplegic spinal cord injury: A systematic review. J. Med. Eng. Technol. 2014, 39, 419–423. [Google Scholar] [CrossRef]
- Andrews, B.J.; Baxendale, R.H.; Barnett, R.; Phillips, G.F.; Yamazaki, T.; Paul, J.P.; Freeman, P.A. Hybrid FES orthosis incorporating closed loop control and sensory feedback. J. Biomed. Eng. 1988, 10, 189–195. [Google Scholar] [CrossRef]
- Kralj, A.; Bajd, T.; Turk, R. Enhancement of gait restoration in spinal injured patients by functional electrical stimulation. Clin. Orthop. Relat. Res. 1988, 233, 34–43. [Google Scholar] [CrossRef]
- Kralj, A.R.; Bajd, T.; Munih, M.; Turk, R. FES gait restoration and balance control in spinal cord-injured patients. Prog. Brain Res. 1993, 97, 387–396. [Google Scholar]
- Klose, K.J.; Jacobs, P.L.; Broton, J.G.; Guest, R.S.; Needham-Shropshire, B.M.; Lebwohl, N.; Nash, M.S.; Green, B.A. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: Part 1. Ambulation performance and anthropometric measures. Arch. Phys. Med. Rehabil. 1997, 78, 789–793. [Google Scholar] [CrossRef]
- Marsolais, E.B.; Kobetic, R. Functional electrical stimulation for walking in paraplegia. J. Bone Jt. Surg. Am. 1987, 69, 728–733. [Google Scholar] [CrossRef]
- Shimada, Y.; Sato, K.; Kagaya, H.; Konishi, N.; Miyamoto, S.; Matsunaga, T. Clinical use of percutaneous intramuscular electrodes for functional electrical stimulation. Arch. Phys. Med. Rehabil. 1996, 77, 1014–1018. [Google Scholar] [CrossRef]
- Smith, C.; Deimling, A. The use of a neuroprosthesis to correct gait deviations in a patient with incomplete spinal cord injury: A Case Study. J. Neurol. Phys. Ther. 2008, 32, 215. [Google Scholar]
- Khamis, S.; Martikaro, R.; Wientroub, S.; Hemo, Y.; Hayek, S. A functional electrical stimulation system improves knee control in crouch gait. J. Child. Orthop. 2015, 9, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Hettinga, D.M.; Andrews, B.J. Oxygen consumption during functional electrical stimulation-assisted exercise in persons with spinal cord injury: Implications for fitness and health. Sports Med. 2008, 38, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Laskin, J.J.; Ashley, E.A.; Olenik, L.M.; Burnham, R.; Cumming, D.C.; Steadward, R.D.; Wheeler, G.D. Electrical stimulation-assisted rowing exercise in spinal cord injured people. A pilot study. Paraplegia 1993, 31, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, G.D.; Andrews, B.; Lederer, R.; Davoodi, R.; Natho, K.; Weiss, C.; Jeon, J.; Bhambhani, Y.; Steadward, R.D. Functional electric stimulation-assisted rowing: Increasing cardiovascular fitness through functional electric stimulation rowing training in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2002, 83, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Davoodi, R.; Andrews, B.J.; Wheeler, G.D.; Lederer, R. Development of an indoor rowing machine with manual FES controller for total body exercise in paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 197–203. [Google Scholar] [CrossRef]
- Hettinga, D.; Andrews, B.J. The feasibility of functional electrical stimulation indoor rowing for high-energy training and sport. Neuromodulation 2007, 10, 291–297. [Google Scholar] [CrossRef]
- Shimada, Y.; Sato, M.; Miyawaki, K.; Iwami, T.; Matsunaga, T.; Hatakeyama, K.; Chida, S.; Itoi, E. The Akita functional electrical-assisted rowing machine for rehabilitation exercise. Akita J. Med. 2006, 33, 105–111. [Google Scholar]
- Taylor, J.A.; Picard, G.; Widrick, J.J. Aerobic capacity with hybrid FES rowing in spinal cord injury: Comparison with arms-only exercise and preliminary findings with regular training. PM&R 2011, 3, 817–824. [Google Scholar] [CrossRef]
- Shaffer, R.F.; Picard, G.; Taylor, J.A. Relationship of spinal cord injury level and duration to peak aerobic capacity with arms-only and hybrid functional electrical stimulation rowing. Am. J. Phys. Med. Rehabil. 2018, 97, 488–491. [Google Scholar] [CrossRef]
- Ye, G.; Grabke, E.P.; Pakosh, M.; Furlan, J.C.; Masani, K. Clinical benefits and system design of FES-rowing exercise for rehabilitation of individuals with spinal cord injury: A systematic review. Arch. Phys. Med. Rehabil. 2021, 102, 1595–1605. [Google Scholar] [CrossRef]
- Van der Scheer, J.W.; Martin Ginis, K.A.; Ditor, D.S.; Goosey-Tolfrey, V.L.; Hicks, A.L.; West, C.R.; Wolfe, D.L. Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review. Neurology 2017, 89, 736–745. [Google Scholar] [CrossRef]
- Van der Scheer, J.W.; Goosey-Tolfrey, V.L.; Valentino, S.E.; Davis, G.M.; Ho, C.H. Functional electrical stimulation cycling exercise after spinal cord injury: A systematic review of health and fitness-related outcomes. J. Neuroeng. Rehabil. 2021, 18, 99. [Google Scholar] [CrossRef] [PubMed]
- Sadowsky, C.L.; Hammond, E.R.; Strohl, A.B.; Commean, P.K.; Eby, S.A.; Damiano, D.L.; Wingert, J.R.; Bae, K.T.; McDonald, J.W., 3rd. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J. Spinal Cord Med. 2013, 36, 612–631. [Google Scholar] [CrossRef]
- Dolbow, D.R.; Gorgey, A.S.; Ketchum, J.M.; Moore, J.R.; Hackett, L.A.; Gater, D.R. Exercise adherence during home-based functional electrical stimulation cycling by individuals with spinal cord injury. Am. J. Phys. Med. Rehabil. 2012, 91, 922–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebb, D.O. The Organization of Behavior: A Neuropsychological Theory; Wiley & Sons: New York, NY, USA, 1949. [Google Scholar]
- Dietz, V.; Colombo, G.; Jensen, L. Locomotor activity in spinal man. Lancet 1994, 344, 1260–1263. [Google Scholar] [CrossRef]
- Dietz, V.; Colombo, G.; Jensen, L.; Baumgartner, L. Locomotor capacity of spinal cord in paraplegic patients. Ann. Neurol. 1995, 37, 574–582. [Google Scholar] [CrossRef]
- Colombo, G.; Wirz, M.; Dietz, V. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 2001, 39, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, S.; Hirano, S.; Saitoh, E. Wearable Power-Assist Locomotor (WPAL) for supporting upright walking in persons with paraplegia. NeuroRehabilitation 2013, 33, 99–106. [Google Scholar] [CrossRef]
- Brinkemper, A.; Aach, M.; Grasmücke, D.; Jettkant, B.; Rosteius, T.; Dudda, M.; Yilmaz, E.; Schildhauer, T.A. Improved physiological gait in acute and chronic SCI patients after training with wearable cyborg hybrid assistive limb. Front. Neurorobot. 2021, 15, 723206. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Matsunaga, T.; Iwami, T.; Kudo, D.; Saitoh, K.; Hatakeyama, K.; Watanabe, M.; Takahashi, Y.; Miyakoshi, N.; Shimada, Y. Development of a rehabilitation robot combined with functional electrical stimulation controlled by non-disabled lower extremity in hemiplegic gait. Prog. Rehabil. Med. 2018, 3, 20180005. [Google Scholar] [CrossRef] [Green Version]
- Haider, I.T.; Lobos, S.M.; Simonian, N.; Schnitzer, T.J.; Edwards, W.B. Bone fragility after spinal cord injury: Reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Osteoporos Int. 2018, 29, 2703–2715. [Google Scholar] [CrossRef]
- Kern, H.; Hofer, C.; Loefler, S.; Zampieri, S.; Gargiulo, P.; Baba, A.; Marcante, A.; Piccione, F.; Pond, A.; Carraro, U. Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by Functional Electrical Stimulation, updated 2017. Neurol Res. 2017, 39, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.V.; Hung, C.Y.; Chen, W.S.; Lai, M.S.; Chien, K.L.; Han, D.S. Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients-a systematic review and meta-analysis. PLoS ONE 2013, 8, e81124. [Google Scholar] [CrossRef] [PubMed]
- Rohm, M.; Schneiders, M.; Müller, C.; Kreilinger, A.; Kaiser, V.; Müller-Putz, G.R.; Rupp, R. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury. Artif. Intell. Med. 2013, 59, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, A.B.; Willett, F.R.; Young, D.R.; Memberg, W.D.; Murphy, B.A.; Miller, J.P.; Walter, B.L.; Sweet, J.A.; Hoyen, H.A.; Keith, M.W.; et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: A proof-of-concept demonstration. Lancet 2017, 389, 1821–1830. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, L.I.; Kapadia, N.; Zivanovic, V.; Rademeyer, H.J.; Alavinia, M.; McGillivray, C.; Kalsi-Ryan, S.; Popovic, M.R.; Marquez-Chin, C. Brain-computer interface-triggered functional electrical stimulation therapy for rehabilitation of reaching and grasping after spinal cord injury: A feasibility study. Spinal Cord Ser. Cases 2021, 7, 24. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasukawa, Y.; Shimada, Y.; Kudo, D.; Saito, K.; Kimura, R.; Chida, S.; Hatakeyama, K.; Miyakoshi, N. Advanced Equipment Development and Clinical Application in Neurorehabilitation for Spinal Cord Injury: Historical Perspectives and Future Directions. Appl. Sci. 2022, 12, 4532. https://doi.org/10.3390/app12094532
Kasukawa Y, Shimada Y, Kudo D, Saito K, Kimura R, Chida S, Hatakeyama K, Miyakoshi N. Advanced Equipment Development and Clinical Application in Neurorehabilitation for Spinal Cord Injury: Historical Perspectives and Future Directions. Applied Sciences. 2022; 12(9):4532. https://doi.org/10.3390/app12094532
Chicago/Turabian StyleKasukawa, Yuji, Yoichi Shimada, Daisuke Kudo, Kimio Saito, Ryota Kimura, Satoaki Chida, Kazutoshi Hatakeyama, and Naohisa Miyakoshi. 2022. "Advanced Equipment Development and Clinical Application in Neurorehabilitation for Spinal Cord Injury: Historical Perspectives and Future Directions" Applied Sciences 12, no. 9: 4532. https://doi.org/10.3390/app12094532
APA StyleKasukawa, Y., Shimada, Y., Kudo, D., Saito, K., Kimura, R., Chida, S., Hatakeyama, K., & Miyakoshi, N. (2022). Advanced Equipment Development and Clinical Application in Neurorehabilitation for Spinal Cord Injury: Historical Perspectives and Future Directions. Applied Sciences, 12(9), 4532. https://doi.org/10.3390/app12094532