Improving Quality Control Methods to Test Strengthening Technologies: A Multilevel Model of Acoustic Pulse Flow
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information and Kinetic Approach
2.2. Strengthening Technologies and Stress Device
3. Results and Discussion
4. Conclusions
- The method proposed in this article is based on a multilevel model of AE parameters and allows for performing quick evaluations of strengthening quality. The approach can be used as a foundation for making the optimal choice of strengthening operations to be applied to real-life items.
- Strengthening occurs where the values of concentration and kinetic indicators (XAE, YAE, WAE) decrease. The lower the values of the indicators, the higher the strengthening, and the better the results produced by the technology.
- High AE activity in samples hardened by heat treatment signals that the traditionally used statistical indicators for assessing strengthening quality are not very informative.
- The results showed that with the specified heat treatment parameters, the service life of the welded joint increases by 48%, while with UIT it increases by 25%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smirnova, O.; Kazanskaya, L.; Koplík, J.; Tan, H.; Gu, X. Concrete based on clinker-free cement: Selecting the functional unit for environmental assessment. Sustainability 2021, 13, 135. [Google Scholar] [CrossRef]
- Smirnova, O.M.; de Navascués, I.M.P.; Mikhailevskii, V.R.; Kolosov, O.I.; Skolota, N.S. Sound-absorbing composites with rubber crumb from used tires. Appl. Sci. 2021, 11, 7347. [Google Scholar] [CrossRef]
- Xiong, Z.; Timokhina, I.; Pereloma, E. Clustering, nano-scale precipitation and strengthening of steels. Prog. Mater. Sci. 2021, 118, 100764. [Google Scholar] [CrossRef]
- Zampieri, P.; Simoncelo, N.; Tetougueni, C.D.; Pellegrino, C. A review of methods for strengthening of masonry arches with composite materials. Eng. Struct. 2018, 171, 154–169. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Zhang, Y.; Wu, Z. Rock strengthening or weakening upon heating in the mild temperature range? Eng. Geol. 2020, 272, 105619. [Google Scholar] [CrossRef]
- Liu, G.; Huang, C.; Zhao, B.; Wang, W.; Sun, S. Effect of Machined Surface Integrity on Fatigue Performance of Metal Workpiece: A Review. Chin. J. Mech. Eng. Engl. Ed. 2021, 34, 118. [Google Scholar] [CrossRef]
- Olugbade, T.O.; Ojo, O.T.; Omiyale, B.O.; Olutomilola, E.O.; Olorunfemi, B.J. A review on the corrosion fatigue strength of surface-modified stainless steels. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 421. [Google Scholar] [CrossRef]
- Sheinerman, A.G. Plastic deformation and fracture processes in metal/graphene composites: A review. Crit. Rev. Solid State Mater. Sci. 2021, 1–28. [Google Scholar] [CrossRef]
- GOST 18295-72; Surface Working. Terms and Definitions. State standard of the union of the SSR: Moscow, Russia, 1973. (In Russian)
- Dive, V.; Lakade, S. Recent research progress on residual stress measurement using non-destructive testing. Mat. Tod. Proc. 2021, 47, 3282–3287. [Google Scholar] [CrossRef]
- Trofimov, A.V.; Rumyantsev, A.E.; Gospodarikov, A.P.; Kirkin, A.P. Non-destructive ultrasonic method of testing the strength of backfill concrete at deep talnakh mines. Tsvetn. Met. 2020, 12, 28–32. [Google Scholar] [CrossRef]
- Potapov, A.I. Estimation of the relation of strength and ultrasound speed in glass-reinforce plastic. J. Min. Inst. 2018, 230, 176–184. [Google Scholar] [CrossRef]
- Rasskazov, I.Y.; Tsirel’, S.V.; Rozanov, A.O.; Tereshkin, A.A.; Gladyr’, A.V. Application of acoustic measurement data to characterize initiation and development of disintegration focus in a rock mass. J. Min. Sci. 2017, 53, 224–231. [Google Scholar] [CrossRef]
- Kozak, K.; Bućko, M.M.; Chlubny, L.; Lis, J.; Antou, G.; Chotard, T. Influence of composition and grain size on the damage evolution in MAX phases investigated by acoustic emission. Mater. Sci. Eng. A 2019, 743, 114–122. [Google Scholar] [CrossRef]
- Kozak, K.; Dosi, A.; Bućko, M.M.; Chlubny, L.; Lis, J.; Antou, G.; Chotard, T. Investigation of the mechanical behavior of MAX phases by acoustic emission technique. Mater. Sci. Eng. A 2017, 707, 73–80. [Google Scholar] [CrossRef]
- Nosov, V.V. On the principles of optimizing the technologies of acoustic-emission strength control of industrial objects. Russ. J. Nondestr. Test. 2016, 52, 386–399. [Google Scholar] [CrossRef]
- Nosov, V.V. Appraising the Service Life of Dangerous Engineering Equipment by Acoustic Emission Diagnosis. J. Mach. Manuf. Reliab. 2020, 49, 1072–1083. [Google Scholar] [CrossRef]
- Fedotov, S.N. Quasi-brittle fracture as failure of hierarchical structure. Fizich. Mezom. 2015, 6, 24–31. (In Russian) [Google Scholar] [CrossRef]
- Moghanlou, M.R.; Khonsari, M.M. On the kinetic formulation of fracture fatigue entropy of metals. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 565–577. [Google Scholar] [CrossRef]
- Sirota, D.Y. A new kinetic model for the long-term strength and geo-composite materials. Mining. Inf. Anal. Bull. 2014, 4, 222–225. (In Russian) [Google Scholar]
- Plotnikov, V.A.; Makarov, S.V. Activation volume and acoustic emission at high-temperature deformation of aluminum. Tamb. Uni. Rep. Ser. Nat. Tech. Sci. 2010, 15, 1068–1071. (In Russian) [Google Scholar]
- Gorbatykh, V.P.; Ivanov, S.O. To definition of the activation volume parameter in the limits of the kinetic theory of durability. Vest MEI. Bull. Mos. Pow. Engin. Inst. 2010, 3, 16–19. (In Russian) [Google Scholar]
- Matlock, D.K.; Kang, S.; De Moor, E.; Speer, J.G. Applications of rapid thermal processing to advanced high strength sheet steel developments. Mater. Charact. 2020, 166, 110397. [Google Scholar] [CrossRef]
- Milyuts, V.G.; Tsukanov, V.V.; Pryakhin, E.I.; Nikitina, L.B. Development of manufacturing technology for high-strength hull steel reducing production cycle and providing high-quality sheets. J. Min. Inst. 2019, 239, 536–543. [Google Scholar] [CrossRef]
- Bezyazychnyi, V.F.; Szcerek, M. Thermal processes research development in machine-building technology. J. Min. Inst. 2018, 232, 395–400. [Google Scholar] [CrossRef]
- Lipin, V.A.; Trufanov, D.A. Effect of chalk thermal treatment mode on its strength. J. Min. Inst. 2019, 236, 210–215. [Google Scholar] [CrossRef] [Green Version]
- Bazhin, V.Y.; Issa, B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. J. Min. Inst. 2021, 249, 393–400. [Google Scholar] [CrossRef]
- Palaev, A.G.; Shammazov, I.A.; Dzhemilev, E.R. Research of the impact of ultrasonic and thermal effects on oil to reduce its viscosity. J. Phys. Conf. Ser. 2020, 1679, 052073. [Google Scholar] [CrossRef]
- Zohrevand, M.; Aghaie-Khafri, M.; Forouzan, F.; Vuorinen, E. Softening mechanisms in ultrasonic treatment of deformed austenitic stainless steel. Ultrasonics 2021, 116, 106519. [Google Scholar] [CrossRef]
- Liu, C.; Lin, C.; Liu, W.; Wang, S.; Chen, Y.; Wang, J.; Wang, J. Effects of local ultrasonic impact treatment on residual stress in an engineering-scale stainless steel pipe girth weld. Int. J. Press. Vessel. Pip. 2021, 192, 104420. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Fang, Y.; Fang, Y.; Liu, B.; Sun, H.; Song, T. Research and development of welding methods and welding mechanism of high-entropy alloys: A review. Mater. Today Commun. 2021, 28, 102503. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, D.; Wu, J.; Xu, M. A review on high-frequency pulsed arc welding. J. Manuf. Process. 2020, 60, 503–519. [Google Scholar] [CrossRef]
- Stepanova, L.N.; Kuten, M.M.; Bobrov, A.L. Using Amplitude Analysis of Acoustic Emission Signals under Cyclic and Static Loading of Steel Samples. Russ. J. Nondestr. Test. 2021, 57, 753–761. [Google Scholar] [CrossRef]
- Stepanova, L.N.; Ramazanov, I.S.; Kireenko, V.V. The development of a defect-rejection procedure for multiple-pass welding by the distribution of the principal parameters of acoustic-emission signals. Russ. J. Nondestr. Test. 2014, 50, 667–678. [Google Scholar] [CrossRef]
- Verzhbitskiy, K.D. Ensuring the Resource of a Vertical Steel Tank by Additional Processing of Welded Joints of the Lower Chord. Ph.D. Thesis, Saint-Petersburg Mining University, Saint Petersburg, Russia, 6 June 2019. [Google Scholar]
AE Indicator | Micromodel | Nanomodel | Macromodel |
---|---|---|---|
XAE (s−1) | dlnξ/dt | /KT | - |
YAE (Pa−1) | dlnξ/dσ | γ/KT | dlnNc/dσ * |
WAE | dlnξ/dKs ** | ω = γσ/KT | lnNB-lnNcw * |
Strengthening Technology/Average Parameter Value | Untreated Samples | Ultrasonic Treatment | Beveling | Heat Treatment | Correlation Coefficient for the Number of Cycles to Failure |
---|---|---|---|---|---|
XAE, s−1 | 0.066 | 0.054 | 0.036 | 0.024 | −0.992 |
YAE, MPa−1 | 0.0049 | 0.0042 | 0.0028 | 0.0012 | −0.999 |
WAE | 0.548 | 0.349 | 0.260 | 0.152 | −0.934 |
MARSE, mV2·ms | 121,011 | 139,038 | 234,456 | 243,607 | 0.993 |
Number of pulses (N) | 75 | 120 | 188 | 243 | 0.982 |
Amplitude, mV | 58.2 | 59.5 | 57.7 | 58.6 | 0.055 |
Activity, 1/N | 7.8 | 9.9 | 15.7 | 18.6 | 0.995 |
Increase in service life, % | 0 | 22 | 25 | 48 | - |
Number of cycles to failure from [35] | 2951 | 4246 | - | 10,399 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorev, E.; Nosov, V. Improving Quality Control Methods to Test Strengthening Technologies: A Multilevel Model of Acoustic Pulse Flow. Appl. Sci. 2022, 12, 4549. https://doi.org/10.3390/app12094549
Grigorev E, Nosov V. Improving Quality Control Methods to Test Strengthening Technologies: A Multilevel Model of Acoustic Pulse Flow. Applied Sciences. 2022; 12(9):4549. https://doi.org/10.3390/app12094549
Chicago/Turabian StyleGrigorev, Egor, and Viktor Nosov. 2022. "Improving Quality Control Methods to Test Strengthening Technologies: A Multilevel Model of Acoustic Pulse Flow" Applied Sciences 12, no. 9: 4549. https://doi.org/10.3390/app12094549
APA StyleGrigorev, E., & Nosov, V. (2022). Improving Quality Control Methods to Test Strengthening Technologies: A Multilevel Model of Acoustic Pulse Flow. Applied Sciences, 12(9), 4549. https://doi.org/10.3390/app12094549