Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics
Abstract
:Featured Application
Abstract
1. Introduction
2. Principle of Doppler Reflectometer for Fusion Plasma Science
3. Concept of Dual-Comb Operation
4. Dual-Comb Doppler Reflectometer System in LHD
4.1. System Ecquipment
4.2. System Test for Doppler Shift Measurement by Rotating Grating
4.3. First Observation in LHD Plasma
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, M.; Holzhauer, E.; Baldzuhn, J.; Kurzan, B.; Scott, B. Doppler reflectometry for the investigation of propagating density perturbations. Plasma Phys. Control. Fusion 2001, 43, 1641. [Google Scholar] [CrossRef]
- Hirsch, M.; Holzhauer, E.; Baldzuhn, J.; Kurzan, B. Doppler reflectometry for the investigation of propagating density perturbations. Rev. Sci. Instrum. 2001, 72, 324. [Google Scholar] [CrossRef]
- Windisch, T.; Wolf, S.; Weir, G.M.; Bozhenkov, S.A.; Damm, H.; Fuchert, G.; Grulke, G.; Hirsch, M.; Kasparek, W.; Klinger, T.; et al. Phased array Doppler reflectometry at Wendelstein 7-X. Rev. Sci. Instrum. 2018, 89, 10E115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Happel, T.; Estrada, T.; Blanco, E.; Tribaldos, V.; Cappa, A.; Bustos, A. Doppler reflectometer system in the stellarator TJ-II. Rev. Sci. Instrum. 2009, 80, 073502. [Google Scholar] [CrossRef] [PubMed]
- Tokuzawa, T.; Ejiri, A.; Kawahata, K.; Tanaka, K.; Yamada, I.; Yoshinuma, M.; Ida, K.; Suzuki, C. Microwave Doppler reflectometer system in LHD. Rev. Sci. Instrum. 2012, 83, 10E322. [Google Scholar] [CrossRef] [Green Version]
- Tokuzawa, T.; Inagaki, S.; Ejiri, A.; Soga, R.; Yamada, I.; Kubo, S.; Yoshinuma, M.; Ida, K.; Suzuki, C.; Tanaka, K.; et al. Ka-band Microwave Frequency Comb Doppler Reflectometer System for the Large Helical Device. Plasma Fusion Res. 2014, 9, 1402149. [Google Scholar] [CrossRef] [Green Version]
- Soga, R.; Tokuzawa, T.; Watanabe, K.Y.; Tanaka, K.; Yamada, I.; Inagaki, S.; Kasuya, N. Developments of frequency comb microwave reflectometer for the interchange mode observations in LHD plasma. J. Instrum. 2016, 11, C02009. [Google Scholar] [CrossRef]
- Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Emoto, M.; Nakanishi, H.; Inagaki, S.; Ida, K.; Yamada, H.; Ejiri, A.; Watanabe, K.Y.; et al. Microwave frequency comb Doppler reflectometer applying fast digital data acquisition system in LHD. Rev. Sci. Instrum. 2018, 89, 10H118. [Google Scholar] [CrossRef]
- Bulanin, V.V.; Lebedev, S.V.; Levin, L.S.; Roytershteyn, V.S. Study of plasma fluctuations in the Tuman-3m tokamak using microwave reflectometry with an obliquely incident probing beam. Plasma Phys. Rep. 2000, 26, 813–819. [Google Scholar] [CrossRef]
- Conway, G.D.; Schirmer, S.; Klenge, S.; Suttrop, W.; Holzhauer, E.; The ASDEX Upgrade Team. Plasma rotation profile measurements using Doppler reflectometry. Plasma Phys. Control. Fusion 2004, 46, 951. [Google Scholar] [CrossRef]
- Conway, G.D.; Angioni, C.; Dux, R.; Ryter, F.; Peeters, A.G.; Schirmer, J.; Troester, C.; CFN Reflectometry Group; The ASDEX Upgrade team. Observations on core turbulence transitions in ASDEX Upgrade using Doppler reflectometry. Nucl. Fusion 2006, 46, S799. [Google Scholar] [CrossRef]
- Schirmer, J.; Conway, G.D.; Holzhauer, E.; Suttrop, W.; Zohm, H.; The ASDEX Upgrade Team. Radial correlation length measurements on ASDEX Upgrade using correlation Doppler reflectometry. Plasma Phys. Control. Fusion 2007, 49, 1019. [Google Scholar] [CrossRef]
- Happel, T.; Kasparek, W.; Hennequin, P.; Höfler, K.; Honoré, C.; The ASDEX Upgrade Team. Design of a variable frequency comb reflectometer system for the ASDEX Upgrade tokamak. Plasma Sci. Technol. 2020, 22, 064002. [Google Scholar] [CrossRef]
- Hennequin, P.; Honoré, C.; Truc, A.; Quéméneur, A.; Lemoine, N. Doppler backscattering system for measuring fluctuations and their perpendicular velocity on Tore Supra. Rev. Sci. Instrum 2004, 75, 3881. [Google Scholar] [CrossRef]
- Hennequin, P.; Honoré, C.; Truc, A.; Quéméneur, A.; Fenzi-Bonizec, C.; Bourdelle, C.; Garbet, X.; Hoang, G.T.; The Tore Supra team. Fluctuation spectra and velocity profile from Doppler backscattering on Tore Supra. Nucl. Fusion 2006, 46, S771. [Google Scholar] [CrossRef]
- Hillesheim, J.C.; Peebles, W.A.; Rhodes, T.L.; Schmitz, L.; Carter, T.A.; Gourdain, P.A.; Wang, G. A multichannel, frequency-modulated, tunable Doppler backscattering and reflectometry system. Rev. Sci. Instrum. 2009, 80, 083507. [Google Scholar] [CrossRef]
- Peebles, W.A.; Rhodes, T.L.; Hillesheim, J.C.; Zeng, L.; Wannberg, C. A novel, multichannel, comb-frequency Doppler backscatter system. Rev. Sci. Instrum. 2010, 81, 10D902. [Google Scholar] [CrossRef]
- Oyama, N.; Takenaga, H.; Suzuki, T.; Sakamoto, Y.; Isayama, A.; The JT-60 Team. Density Fluctuation Measurements Using a Frequency Hopping Reflectometer in JT-60U. Plasma Fusion Res. 2011, 6, 1402014. [Google Scholar] [CrossRef]
- Hillesheim, J.C.; Crocker, N.A.; Peebles, W.A.; Meyer, H.; Meakins, A.; Field, A.R.; Dunai, D.; Carr, M.; Hawkes, N.; The MAST Team. Doppler backscattering for spherical tokamaks and measurement of high-k density fluctuation wavenumber spectrum in MAST. Nucl. Fusion 2015, 55, 073024. [Google Scholar] [CrossRef] [Green Version]
- Hillesheim, J.C.; Delabie, E.; Meyer, H.; Maggi, C.F.; Meneses, L.; Poli, E.; JET Contributors. Stationary Zonal Flows during the Formation of the Edge Transport Barrier in the JET Tokamak. Phys. Rev. Lett. 2016, 116, 065002. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Zhong, W.; Yang, Z.; Liang, A.; Wen, J.; Jiang, M.; Shi, P.; Fu, B.; Chen, C.; Liu, Z.; et al. A multiplexer-based multi-channel microwave Doppler backward scattering reflectometer on the HL-2A tokamak. Rev. Sci. Instrum. 2018, 89, 10H104. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, P.M.; Coda, S.; Porte, L.; Offeddu, N.; Lavanchy, P.; Silva, M.; Toussaint, M.; TCV Team. V-band Doppler backscattering diagnostic in the TCV tokamak. Rev. Sci. Instrum. 2018, 89, 083503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.Q.; Zhou, C.; Liu, A.D.; Wang, M.Y.; Doyle, E.J.; Peebles, W.A.; Wang, G.; Zhang, X.H.; Zhang, J.; Feng, X.; et al. An eight-channel Doppler backscattering system in the experimental advanced superconducting tokamak. Rev. Sci. Instrum. 2017, 88, 073504. [Google Scholar] [CrossRef]
- Wang, M.Y.; Zhou, C.; Liu, A.D.; Zhang, J.; Liu, Z.Y.; Feng, X.; Ji, J.X.; Li, H.; Lan, T.; Xie, J.L.; et al. A novel, tunable, multimodal microwave system for microwave reflectometry system. Rev. Sci. Instrum. 2018, 89, 093501. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Liu, A.D.; Zhou, C.; Wang, M.Y.; Zhang, J.; Liu, Z.Y.; Liu, Y.; Zhou, T.F.; Zhang, S.B.; Kong, D.F.; et al. Five-channel tunable W-band Doppler backscattering system in the experimental advanced superconducting tokamak. Rev. Sci. Instrum. 2019, 90, 024704. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.; Ruskov, E.; Deng, B.H.; Gota, H.; Gupta, D.; Tuszewski, M.; Douglass, J.; Peebles, W.A.; Binderbauer, M.; Tajima, T. Multi-channel Doppler backscattering measurements in the C-2 field reversed configuration. Rev. Sci. Instrum. 2014, 85, 11D840. [Google Scholar] [CrossRef]
- Kohagura, J.; Tokuzawa, T.; Yoshikawa, M.; Narita, K.; Sakamoto, M.; Nakashima, Y. Doppler Reflectometer System for Measuring Rotation Velocity of Fluctuation in GAMMA 10. Plasma Fusion Res. 2016, 11, 2402022. [Google Scholar] [CrossRef] [Green Version]
- Hacquin, S.; Alper, B.; Sharapov, S.; Borba, D.; Boswell, C.; Fessey, J.; Meneses, L.; Walsh, M.; JET EFDA Contributors. Characterization of Alfvén cascades on the JET tokamak using a multi-channel O-mode reflectometer diagnostic. Nucl. Fusion 2006, 46, S714. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Irby, J.; Stek, P.; Hutchinson, I.; Snipes, J.; Nazikian, R.; McCarthy, M. Upgrade of reflectometry profile and fluctuation measurements in Alcator C-Mod. Rev. Sci. Instrum. 1999, 70, 1078. [Google Scholar] [CrossRef]
- Tokuzawa, T.; Ejiri, A.; Kawahata, K. Multifrequency channel microwave reflectometer with frequency hopping operation for density fluctuation measurements in Large Helical Device. Rev. Sci. Instrum. 2010, 81, 10D906. [Google Scholar] [CrossRef] [Green Version]
- Hornung, G.; Clairet, F.; Falchetto, G.L.; Sabot, R.; Arnichand, H.; Vermare, L. Turbulence correlation properties measured with ultrafast sweeping reflectometry on Tore Supra. Plasma Phys. Control. Fusion 2013, 55, 125013. [Google Scholar] [CrossRef] [Green Version]
- Roh, Y.; Domier, C.W.; Luhmann, N.C., Jr. Ultrashort pulse reflectometry for density profile and fluctuation measurements on SSPX. Rev. Sci. Instrum. 2003, 74, 1518. [Google Scholar] [CrossRef]
- Tokuzawa, T.; Kawahata, K.; Tanaka, K.; LHD Experimental Group. Multichannel ultrashort pulsed radar reflectometer on LHD. Rev. Sci. Instrum. 2006, 77, 10E903. [Google Scholar] [CrossRef] [Green Version]
- Domier, C.W.; Zhu, Y.; Dannenberg, J.; Luhmann, N., Jr. C. A next generation ultra short pulse reflectometry (USPR) diagnostic. Rev. Sci. Instrum. 2021, 92, 034714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Inagaki, S.; Kawachi, Y. Development of a Frequency Comb Sweep Microwave Reflectometer in the Linear Device PANTA. Plasma Fusion Res. 2019, 14, 1201131. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokuzawa, T.; Inagaki, S.; Inomoto, M.; Ejiri, A.; Nasu, T.; Tsujimura, T.I.; Ida, K. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Appl. Sci. 2022, 12, 4744. https://doi.org/10.3390/app12094744
Tokuzawa T, Inagaki S, Inomoto M, Ejiri A, Nasu T, Tsujimura TI, Ida K. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences. 2022; 12(9):4744. https://doi.org/10.3390/app12094744
Chicago/Turabian StyleTokuzawa, Tokihiko, Shigeru Inagaki, Michiaki Inomoto, Akira Ejiri, Tatsuhiro Nasu, Toru Ii Tsujimura, and Katsumi Ida. 2022. "Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics" Applied Sciences 12, no. 9: 4744. https://doi.org/10.3390/app12094744
APA StyleTokuzawa, T., Inagaki, S., Inomoto, M., Ejiri, A., Nasu, T., Tsujimura, T. I., & Ida, K. (2022). Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences, 12(9), 4744. https://doi.org/10.3390/app12094744