Increasing the Oxidative Stability of the Wafer Lipid Fraction with Fruit Extract during Storage
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Wafers
2.3. Fruit Extract Analysis
2.4. Extraction of Lipid Fraction
2.5. DSC Oxidative Stability Test
2.6. DPPH Antioxidant Activity Determination in Lipid Fraction
2.7. Diene Content Determination (CDs)
2.8. Statistical Analysis
3. Results
3.1. DSC Isothermal Oxidative Stability Test of Lipids Extracted from Wafers
3.2. Conjugated Diene Content and DPPH Antioxidant Activity of Lipids Extracted from Wafers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Wafer Market. Available online: https://magazinebbm.com/blog/world-wafer-market-1626 (accessed on 2 September 2022).
- Verma, A. Process Engineering Analysis of Confectionery Wafer Manufacture; School of Chemical Engineering and Analytical Science: Manchester, UK, 2019. [Google Scholar]
- Daglioglu, O.; Tasan, M.; Gecgel, U.; Daglioglu, F. Changes in oxidative stability of selected bakery products during shelf life. Food Sci. Technol. Res. 2004, 10, 464–468. [Google Scholar] [CrossRef] [Green Version]
- Maire, M.; Rega, B.; Cuvelier, M.E.; Soto, P.; Giampaoli, P. Lipid oxidation in baked products: Impact of formula and process on the generation of volatile compounds. Food Chem. 2013, 141, 3510–3518. [Google Scholar] [CrossRef]
- Kozłowska, M.; Żbikowska, A.; Szpicer, A.; Półtorak, A. Oxidative stability of lipid fractions of sponge-fat cakes after green tea extracts application. J. Food Sci. Technol. 2019, 56, 2628–2638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, W.; Budge, S.M. Techniques for the Analysis of Minor Lipid Oxidation Products Derived from Triacylglycerols: Epoxides, Alcohols, and Ketones. Compr. Rev. Food Sci. Food Saf. 2017, 16, 735–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barlow, S.M. Toxicological Aspects of Antioxidants Used as Food Additives. In Food Antioxidants; Springer: Dordrecht, The Netherlands, 1990; pp. 253–307. [Google Scholar]
- Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D.; Korczak, J.; Helak, B.; Dziedzic, K.; Górecka, D. Antioxidative potential, nutritional value and sensory profiles of confectionery fortified with green and yellow tea leaves (Camellia sinensis). Food Chem. 2016, 211, 448–454. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Obuchowski, W.; Gośliński, M. Evaluation of antioxidant activity of green tea extract and its effect on the biscuits lipid fraction oxidative stability. J. Food Sci. 2009, 74, S362–S370. [Google Scholar] [CrossRef]
- Bhat, N.A.; Hamdani, A.M.; Masoodi, F.A. Development of functional cookies using saffron extract. J. Food Sci. Technol. 2018, 55, 4918–4927. [Google Scholar] [CrossRef]
- Reddy, V.; Urooj, A.; Kumar, A. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chem. 2005, 90, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Mišan, A.; Mimica-Dukić, N.; Sakač, M.; Mandić, A.; Sedej, I.; Šimurina, O.; Tumbas, V. Antioxidant Activity of Medicinal Plant Extracts in Cookies. J. Food Sci. 2011, 76, C1239–C1244. [Google Scholar] [CrossRef]
- Gbenga-Fabusiwa, F.J.; Oladele, E.P.; Oboh, G.; Adefegha, S.A.; Oshodi, A.A. Polyphenol contents and antioxidants activities of biscuits produced from ginger-enriched pigeon pea–wheat composite flour blends. J. Food Biochem. 2018, 42, e12526. [Google Scholar] [CrossRef]
- Anuradha, K.; Naidu, M.M.; Manohar, R.S.; Indiramma, A.R. Effect of vanilla extract on radical scavenging activity in biscuits. Flavour Fragr. J. 2010, 25, 488–492. [Google Scholar] [CrossRef]
- Szymanowska, U.; Karaś, M.; Bochnak-Niedźwiecka, J. Antioxidant and anti-inflammatory potential and consumer acceptance of wafers enriched with Freeze-Dried Raspberry Pomace. Appl. Sci. 2021, 11, 6807. [Google Scholar] [CrossRef]
- Bialek, M.; Rutkowska, J.; Bialek, A.; Adamska, A. Oxidative Stability of Lipid Fraction of Cookies Enriched with Chokeberry Polyphenols Extract. Pol. J. Food Nutr. Sci. 2016, 66, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Ismail, T.; Akhtar, S.; Riaz, M.; Hameed, A.; Afzal, K.; Sheikh, A.S. Oxidative and Microbial Stability of Pomegranate Peel Extracts and Bagasse Supplemented Cookies. J. Food Qual. 2016, 39, 658–668. [Google Scholar] [CrossRef]
- Obafaye, R.O.; Omoba, O.S. Orange peel flour: A potential source of antioxidant and dietary fiber in pearl-millet biscuit. J. Food Biochem. 2018, 42, e12523. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-calixto, F. A procedure to measure the antiradical efficienc y of polyphenols. J. Sci. Food Agric. 1998, 270, 270–276. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- ISO 11357-6; Plastics—Differential Scanning Calorimetry (DSC). European Committee for Standardization: Geneva, Switzerland, 2018.
- Espin, J.C.; Soler-Rivas, C.; Wichers, H.J. Characterization of the total free radical scavenger capacity of vegetable oils and oil fractions using 2,2-diphenyl-1-picrylhydrazyl radical Characterization of the Total Free Radical Scavenger Capacity of 2,2-Diphenyl-1-picrylhydrazyl Radical. J. Agric. Food Chem. 2000, 48, 648–656. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 2007, 103, 1494–1501. [Google Scholar] [CrossRef]
- AOCS Spectrophotometric Determination of Conjugated Dienoic Acid. In Official Methods and Recommended Practices of the American Oil Chemists’; AOCS Press: Champaign, IL, USA, 2003; pp. 1–2.
- Tomaszewska-Gras, J.; Islam, M.; Grzeca, L.; Kaczmarek, A.; Fornal, E. Comprehensive Thermal Characteristics of Different Cultivars of flaxseed oil (Linum usittatissimum L.). Molecules 2021, 26, 1958. [Google Scholar] [CrossRef]
- Islam, M.; Muzolf-Panek, M.; Fornal, E.; Tomaszewska-Gras, J. DSC isothermal and non-isothermal assessment of thermo-oxidative stability of different cultivars of Camelina sativa L. seed oils. J. Therm. Anal. Calorim. 2022, 147, 10013–10026. [Google Scholar] [CrossRef]
- Zbikowska, A.; Kozlowska, M.; Poltorak, A.; Kowalska, M.; Rutkowska, J.; Zbikowska, A. Effect of addition of plant extracts on the durability and sensory properties of oat flake cookies. J. Therm. Anal. Calorim. 2018, 134, 1101–1111. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, M.; Żbikowska, A.; Gruczyńska, E.; Żontała, K.; Półtorak, A. Effects of spice extracts on lipid fraction oxidative stability of cookies investigated by DSC. J. Therm. Anal. Calorim. 2014, 118, 1697–1705. [Google Scholar] [CrossRef]
- Barriuso, B.; Astiasarán, I.; Ansorena, D. A review of analytical methods measuring lipid oxidation status in foods: A challenging task. Eur. Food Res. Technol. 2013, 236, 1–15. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Żbikowska, A.; Kowalska, M.; Rutkowska, J.; Kozłowska, M.; Onacik-Gür, S. Impact of green tea extract addition on oxidative changes in the lipid fraction of pastry products. Acta Sci. Pol. Technol. Aliment. 2017, 16, 25–35. [Google Scholar] [CrossRef] [PubMed]
Parameter | DPPH | CDs | OIT120 | OIT100 |
---|---|---|---|---|
DPPH | 1 | −0.78 * | 0.73 * | 0.70 * |
CDs | 1 | −0.60 * | −0.64 * | |
OIT 120 | 1 | 0.95 * | ||
OIT 100 | 1 |
Parameter | LWS | LWE | ||
---|---|---|---|---|
β | R2 | β | R2 | |
OIT 100 | −5.44 (≤13) | 0.98 | −2.86 (≤6) −6.78 (>6) | 0.98 0.96 |
OIT 120 | −14.86 (≤6) 0 * (>6) | 0.91 1 | −6.99 (≤6) −0.75 * (>6) | 0.85 1 |
CDs | 63.03 (≤13) | 0.67 | 35.57 (≤13) | 0.87 |
DPPH | −11.32 (≤6) −5.37 (>6) | 0.96 0.85 | −7.85 (≤6) 2.02 * (>6) | 0.68 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bełkowska, L.; Muzolf-Panek, M.; Islam, M.; Tomaszewska-Gras, J. Increasing the Oxidative Stability of the Wafer Lipid Fraction with Fruit Extract during Storage. Appl. Sci. 2023, 13, 103. https://doi.org/10.3390/app13010103
Bełkowska L, Muzolf-Panek M, Islam M, Tomaszewska-Gras J. Increasing the Oxidative Stability of the Wafer Lipid Fraction with Fruit Extract during Storage. Applied Sciences. 2023; 13(1):103. https://doi.org/10.3390/app13010103
Chicago/Turabian StyleBełkowska, Liliana, Małgorzata Muzolf-Panek, Mahbuba Islam, and Jolanta Tomaszewska-Gras. 2023. "Increasing the Oxidative Stability of the Wafer Lipid Fraction with Fruit Extract during Storage" Applied Sciences 13, no. 1: 103. https://doi.org/10.3390/app13010103
APA StyleBełkowska, L., Muzolf-Panek, M., Islam, M., & Tomaszewska-Gras, J. (2023). Increasing the Oxidative Stability of the Wafer Lipid Fraction with Fruit Extract during Storage. Applied Sciences, 13(1), 103. https://doi.org/10.3390/app13010103