Influence of Spray Drying on Encapsulation Efficiencies and Structure of Casein Micelles Loaded with Anthraquinones Extracted from Aloe vera Plant
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Rehydration of Casein Micelles
2.2.2. Preparation of Anthraquinones-Loaded Casein Micelles by Ultrasonication
2.2.3. Spray Drying of Anthraquinone-Loaded Casein Micelles
2.3. Characterization of Physical Properties of Spray-Dried Anthraquinone-Loaded Casein Micelles
2.3.1. Encapsulation Efficiency
2.3.2. Zeta Potential and pH Measurements
2.3.3. Color Measurements
2.3.4. Moisture Contents
2.3.5. Scanning Electron Microscopy
2.3.6. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.7. Statistical Analysis
3. Results and Discussion
3.1. Encapsulation Efficiency of Spray-Dried Anthraquinone-Loaded Casein Micelles
3.2. Zeta Potential and pH of Spray-Dried Anthraquinone-Loaded CMs
3.3. Colour and Moisture Contents of Spray-Dried Anthraquinone-Loaded Casein Micelles
3.4. Comparison of Microcapsules by Scanning Electron Microscopy (SEM)
3.5. FTIR
4. Conclusions
- Spray drying caused a decrease in encapsulation efficiencies of aloin, aloe-emodin and rhein in CMAQP due to the shear rate imparted on casein micelles due to dehydration stress and temperature.
- In contrast, CMFDP exhibited increased EE% of aloin and rhein due to the accessibility of an embedded hydrophobic binding site after spray-drying and got attached to the core of casein micelles by folding and unfolding of CM structure, as evident by FTIR.
- A decrease in zeta potential, particle size and lightness corresponded to an early stage of Maillard reaction during spray-drying in CMAQP, while spray-drying did not change the secondary structure of casein micelles in CMAQP. However, the secondary structure of casein micelles altered in CMFDP and CMWLAG due to air-interface stresses during spray-drying as a result of the pH of nano capsules.
- The color parameters of CMAQP, CMFDP and CMWLAG, corresponded to the early, advanced and final stages of the Maillard reaction, respectively. These results suggested that encapsulation efficiencies depend on pH, spray-drying conditions, and degree of Maillard reaction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chopde, S.; Datir, R.; Deshmukh, G.; Dhotre, A.; Patil, M. Nanoparticle formation by nanospray drying & its application in nanoencapsulation of food bioactive ingredients. J. Agric. Food Res. 2020, 2, 100085. [Google Scholar]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Labuschagne, P. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Res. Int. 2018, 107, 227–247. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, U.; Gill, H.; Chandrapala, J. Casein Micelles as an Emerging Delivery System for Bioactive Food Components. Foods 2021, 10, 1965. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Fitzpatrick, J.; Cronin, K.; Maguire, P.; Zhang, H.; Miao, S. Rehydration behaviours of high protein dairy powders: The influence of agglomeration on wettability, dispersibility and solubility. Food Hydrocoll. 2016, 58, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Malekhosseini, P.; Alami, M.; Khomeiri, M.; Esteghlal, S.; Nekoei, A.R.; Hosseini, S.M.H. Development of casein-based nanoencapsulation systems for delivery of epigallocatechin gallate and folic acid. Food Sci. Nutr. 2019, 7, 519–527. [Google Scholar] [CrossRef]
- Shapira, A.; Assaraf, Y.G.; Livney, Y.D. Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 119–126. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Li, X.; Lan, S.; Wang, J.; Yu, D. Ultrasonic-assisted preparation of α-Tocopherol/casein nanoparticles and application in grape seed oil emulsion. Ultrason. Sonochem. 2021, 80, 105810. [Google Scholar] [CrossRef]
- Zahariev, N.; Marudova, M.; Milenkova, S.; Uzunova, Y.; Pilicheva, B. Casein Micelles as Nanocarriers for Benzydamine Delivery. Polymers 2021, 13, 4357. [Google Scholar] [CrossRef]
- Nascimento, L.G.L.; Casanova, F.; Silva, N.F.N.; de Carvalho Teixeira, Á.V.N.; Júnior, P.P.D.S.P.; Vidigal, M.C.T.R.; Stringheta, P.C.; de Carvalho, A.F. Use of a crosslinked casein micelle hydrogel as a carrier for jaboticaba (Myrciaria cauliflora) extract. Food Hydrocoll. 2020, 106, 105872. [Google Scholar] [CrossRef]
- Liao, M.; Ma, L.; Miao, S.; Hu, X.; Liao, X.; Chen, F.; Ji, J. The in-vitro digestion behaviors of milk proteins acting as wall materials in spray-dried microparticles: Effects on the release of loaded blueberry anthocyanins. Food Hydrocoll. 2021, 115, 106620. [Google Scholar] [CrossRef]
- Hua, C.; Yu, W.; Yang, M.; Cai, Q.; Gao, T.; Zhang, S.; Xu, H.; He, H.; Peng, N.; Liu, Y. Casein-pectin nanocomplexes as a potential oral delivery system for improving stability and bioactivity of curcumin. Colloid Polym. Sci. 2021, 299, 1557–1566. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Z.; Zhong, Q. Caseinate nanoparticles co-loaded with quercetin and avenanthramide 2c using a novel two-step pH-driven method: Formation, characterization, and bioavailability. Food Hydrocoll. 2022, 129, 107669. [Google Scholar] [CrossRef]
- Sadiq, U.; Gill, H.; Chandrapala, J. Ultrasound-Assisted Encapsulation of Anthraquinones Extracted from Aloe-Vera Plant into Casein Micelles. Gels 2022, 8, 597. [Google Scholar] [CrossRef]
- Lee, W.J.; Tan, C.P.; Sulaiman, R.; Smith Jr, R.L.; Chong, G.H. Microencapsulation of red palm oil as an oil-in-water emulsion with supercritical carbon dioxide solution-enhanced dispersion. J. Food Eng. 2018, 222, 100–109. [Google Scholar] [CrossRef]
- Wandrey, C.; Bartkowiak, A.; Harding, S.E. Materials for encapsulation. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 31–100. [Google Scholar]
- Lucas, J.; Ralaivao, M.; Estevinho, B.N.; Rocha, F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technol. 2020, 362, 428–435. [Google Scholar] [CrossRef]
- Rigon, R.T.; Zapata Noreña, C.P. Microencapsulation by spray-drying of bioactive compounds extracted from blackberry (Rubus fruticosus). J. Food Sci. Technol. 2016, 53, 1515–1524. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, Y.; Petit, J.; Gianfrancesco, A.; Sanders, C.F.W.; Scher, J.; Gaiani, C. Impact of Spray-Drying Process Parameters on Dairy Powder Surface Composition and Properties. Dry. Technol. 2015, 33, 1654–1661. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem. 2011, 129, 1139–1147. [Google Scholar]
- Ray, S.; Raychaudhuri, U.; Chakraborty, R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci. 2016, 13, 76–83. [Google Scholar] [CrossRef]
- Filková, I.; Mujumdar, A.S. Industrial spray drying systems. In Handbook of Industrial Drying; CRC Press: Boca Raton, FL, USA, 2020; pp. 263–307. [Google Scholar]
- Sadiq, U.; Gill, H.; Chandrapala, J. Temperature and pH Stability of Anthraquinones from Native Aloe vera Gel, Spray-Dried and Freeze-Dried Aloe vera Powders during Storage. Foods 2022, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Bastías-Montes, J.M.; Choque-Chávez, M.C.; Alarcón-Enos, J.; Quevedo-León, R.; Muñoz-Fariña, O.; Vidal-San-Martín, C. Effect of spray drying at 150, 160, and 170 C on the physical and chemical properties of maqui extract (Aristotelia chilensis (Molina) Stuntz). Chil. J. Agric. Res. 2019, 79, 144–152. [Google Scholar] [CrossRef]
- Zhou, Z.; Langrish, T. Color formation and Maillard reactions during the spray drying process of skim milk and model systems. J. Food Process Eng. 2022, 45, e13936. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Utilization of mango, apple and banana fruit peels as prebiotics and functional ingredients. Agriculture 2021, 11, 584. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. Fermentation 2022, 8, 469. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Zhang, T.; Liu, K.; Liu, L.; He, Z.; Xu, B.; Wu, X. Characterization of binding interactions of anthraquinones and bovine β-lactoglobulin. Food Chem. 2019, 281, 28–35. [Google Scholar] [CrossRef]
- Maa, Y.F.; Hsu, C.C. Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol. Bioeng. 1997, 54, 503–512. [Google Scholar] [CrossRef]
- Hasni, I.; Bourassa, P.; Hamdani, S.; Samson, G.; Carpentier, R.; Tajmir-Riahi, H.-A. Interaction of milk α-and β-caseins with tea polyphenols. Food Chem. 2011, 126, 630–639. [Google Scholar] [CrossRef]
- Bremer, L.G.; van Vliet, T.; Walstra, P. Theoretical and experimental study of the fractal nature of the structure of casein gels. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1989, 85, 3359–3372. [Google Scholar] [CrossRef]
- Chardot, V.; Banon, S.; Misiuwianiec, M.; Hardy, J. Growth kinetics and fractal dimensions of casein particles during acidification. J. Dairy Sci. 2002, 85, 8–14. [Google Scholar] [CrossRef]
- Jarunglumlert, T.; Nakagawa, K.; Adachi, S. Influence of aggregate structure of casein on the encapsulation efficiency of β-carotene entrapped via hydrophobic interaction. Food Struct. 2015, 5, 42–50. [Google Scholar] [CrossRef]
- Anema, S.G.; Klostermeyer, H. ζ-Potentials of casein micelles from reconstituted skim milk heated at 120 C. Int. Dairy J. 1996, 6, 673–687. [Google Scholar] [CrossRef]
- Creamer, L.K.; Plowman, J.E.; Liddell, M.J.; Smith, M.H.; Hill, J.P. Micelle Stability: κ-Casein Structure and Function. J. Dairy Sci. 1998, 81, 3004–3012. [Google Scholar] [CrossRef]
- Akıllıoğlu, H.G.l.; Gokmen, V. Effects of hydrophobic and ionic interactions on glycation of casein during Maillard reaction. J. Agric. Food Chem. 2014, 62, 11289–11295. [Google Scholar] [CrossRef]
- Krishnankutty Nair, P. Colloidal Behaviour of Casein Micelles with Concentration. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada, 2012. [Google Scholar]
- Bachar, M.; Mandelbaum, A.; Portnaya, I.; Perlstein, H.; Even-Chen, S.; Barenholz, Y.; Danino, D. Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles. J. Control. Release 2012, 160, 164–171. [Google Scholar] [CrossRef]
- Zhong, C.; Tan, S.; Langrish, T. Redness generation via Maillard reactions of whey protein isolate (WPI) and ascorbic acid (vitamin C) in spray-dried powders. J. Food Eng. 2019, 244, 11–20. [Google Scholar] [CrossRef]
- Van Boekel, M. Effect of heating on Maillard reactions in milk. Food Chem. 1998, 62, 403–414. [Google Scholar] [CrossRef]
- Morales, F.; Van Boekel, M. A study on advanced Maillard reaction in heated casein/sugar solutions: Colour formation. Int. Dairy J. 1998, 8, 907–915. [Google Scholar] [CrossRef]
- Bosch, L.; Alegría, A.; Farré, R.; Clemente, G. Fluorescence and color as markers for the Maillard reaction in milk–cereal based infant foods during storage. Food Chem. 2007, 105, 1135–1143. [Google Scholar] [CrossRef]
- Kumar, N. Optimization of spray drying conditions for production of aloe-vera powder. Chem. Sci. Rev. Lett. 2017, 6, 525–532. [Google Scholar]
- Khanji, A.N.; Michaux, F.; Petit, J.; Salameh, D.; Rizk, T.; Jasniewski, J.; Banon, S. Structure, gelation, and antioxidant properties of curcumin-doped casein micelle powder produced by spray-drying. Food Funct. 2018, 9, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.S.; Harold, R.W. The Measurement of Appearance; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Nijdam, J.; Langrish, T. An investigation of milk powders produced by a laboratory-scale spray dryer. Dry. Technol. 2005, 23, 1043–1056. [Google Scholar] [CrossRef]
- McLellan, M.; Lind, L.; Kime, R. Hue angle determinations and statistical analysis for multiquadrant Hunter L, a, b data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Horvath, Z.H.; Halasz-Fekete, M. Instrumental colour measurement of paprika grist. Ann. Fac. Eng. Hunedoara 2005, 3, 101–106. [Google Scholar]
- Learoyd, T.P.; Burrows, J.L.; French, E.; Seville, P.C. Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate. Eur. J. Pharm. Biopharm. 2008, 68, 224–234. [Google Scholar] [CrossRef]
- Carter, B.; Patel, H.; Barbano, D.M.; Drake, M. The effect of spray drying on the difference in flavor and functional properties of liquid and dried whey proteins, milk proteins, and micellar casein concentrates. J. Dairy Sci. 2018, 101, 3900–3909. [Google Scholar] [CrossRef]
- Corrigan, O. Thermal analysis of spray dried products. Thermochim. Acta 1995, 248, 245–258. [Google Scholar] [CrossRef]
- Neves, M.I.L.; Desobry-Banon, S.; Perrone, I.T.; Desobry, S.; Petit, J. Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties, and stability during storage. Powder Technol. 2019, 345, 601–607. [Google Scholar] [CrossRef]
- Mimouni, A.; Deeth, H.C.; Whittaker, A.K.; Gidley, M.J.; Bhandari, B.R. Rehydration process of milk protein concentrate powder monitored by static light scattering. Food Hydrocoll. 2009, 23, 1958–1965. [Google Scholar] [CrossRef]
- Dalgleish, D.G. On the structural models of bovine casein micelles—Review and possible improvements. Soft Matter 2011, 7, 2265–2272. [Google Scholar] [CrossRef]
- Sadek, C.; Schuck, P.; Fallourd, Y.; Pradeau, N.; Jeantet, R.; Le Floch-Fouere, C. Buckling and collapse during drying of a single aqueous dispersion of casein micelle droplet. Food Hydrocoll. 2016, 52, 161–166. [Google Scholar] [CrossRef]
- Tan, S.; Ebrahimi, A.; Langrish, T. Smart release-control of microencapsulated ingredients from milk protein tablets using spray drying and heating. Food Hydrocoll. 2019, 92, 181–188. [Google Scholar] [CrossRef]
- Yang, M.; Wei, Y.; Ashokkumar, M.; Qin, J.; Han, N.; Wang, Y. Effect of ultrasound on binding interaction between emodin and micellar casein and its microencapsulation at various temperatures. Ultrason. Sonochem. 2020, 62, 104861. [Google Scholar] [CrossRef]
- Singh, H. Interactions of milk proteins during the manufacture of milk powders. Le Lait 2007, 87, 413–423. [Google Scholar] [CrossRef]
- McKenna, A.B. Effect of Processing and Storage on the Reconstitution Properties of Whole Milk and Ultrafiltered Skim Milk Powders: Thesis Presented in Partial Fulfilment of the Requirement for the Degree of Doctor of Philosophy in Food Technology. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2000. [Google Scholar]
- Cleland, J.L.; Powell, M.F.; Shire, S.J. The development of stable protein formulations: A close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carr. Syst. 1993, 10, 307–377. [Google Scholar]
- Wolkers, W.F.; van Kilsdonk, M.G.; Hoekstra, F.A. Dehydration-induced conformational changes of poly-L-lysine as influenced by drying rate and carbohydrates. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1998, 1425, 127–136. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Sun, N.; Wang, Y.; Lin, S. Formation and evaluation of casein-gum arabic coacervates via pH-dependent complexation using fast acidification. Int. J. Biol. Macromol. 2018, 120, 783–788. [Google Scholar]
- Holt, C.; WAHLGREN, M.N.; DRAKENBERG, T. Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem. J. 1996, 314, 1035–1039. [Google Scholar] [CrossRef]
- Liu, F.; Ma, D.; Luo, X.; Zhang, Z.; He, L.; Gao, Y.; McClements, D.J. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 2018, 79, 450–461. [Google Scholar] [CrossRef]
Sample | Moisture (% in Dry Weight) | pH | L* | a* | b* | C* (Chroma) | H* (Hue Angle) | ΔE | Visual Observation |
---|---|---|---|---|---|---|---|---|---|
CM Control | 5.11 ± 0.61 b | 7.30 ± 0.00 a | 96.88 ± 0.66 a | −0.13 ± 0.02 d | 3.51 ± 0.81 c | 3.50 ± 0.80 c | 92.81 ± 0.34 a | 1.32 d | |
CMAQP | 4.45 ± 0.40 c | 5.54 ± 0.02 b AQP (5.50) | 82.85 ± 0.69 b | 5.52 ± 0.32 b | 10.81 ± 0.44 b | 12.13 ± 0.53 b | 63.29 ± 0.82 c | 17.54 c | |
CMFDP | 5.91 ± 0.23 b | 4.87 ± 0.12 b FDP (4.52) | 79.75 ± 1.37 c | 7.7 ± 0.53 a | 9.44 ± 0.25 b | 12.19 ± 0.53 b | 50.79 ± 1.22 d | 20.32 b | |
CMWLAG | 6.50 ± 0.81 a | 4.65 ± 0.00 c WLAG (4.56) | 73.03 ± 0.58 d | 4.79 ± 0.07 c | 22.32 ± 0.29 a | 22.82 ± 0.27 a | 77.88 ± 0.27 b | 31.73 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadiq, U.; Gill, H.; Chandrapala, J.; Shahid, F. Influence of Spray Drying on Encapsulation Efficiencies and Structure of Casein Micelles Loaded with Anthraquinones Extracted from Aloe vera Plant. Appl. Sci. 2023, 13, 110. https://doi.org/10.3390/app13010110
Sadiq U, Gill H, Chandrapala J, Shahid F. Influence of Spray Drying on Encapsulation Efficiencies and Structure of Casein Micelles Loaded with Anthraquinones Extracted from Aloe vera Plant. Applied Sciences. 2023; 13(1):110. https://doi.org/10.3390/app13010110
Chicago/Turabian StyleSadiq, Uzma, Harsharn Gill, Jayani Chandrapala, and Fatima Shahid. 2023. "Influence of Spray Drying on Encapsulation Efficiencies and Structure of Casein Micelles Loaded with Anthraquinones Extracted from Aloe vera Plant" Applied Sciences 13, no. 1: 110. https://doi.org/10.3390/app13010110
APA StyleSadiq, U., Gill, H., Chandrapala, J., & Shahid, F. (2023). Influence of Spray Drying on Encapsulation Efficiencies and Structure of Casein Micelles Loaded with Anthraquinones Extracted from Aloe vera Plant. Applied Sciences, 13(1), 110. https://doi.org/10.3390/app13010110