Antioxidant and Antimicrobial Properties of Selected Red Seaweeds from Central Portugal
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Biomass Harvesting and Processing
2.2. Aqueous Extractions
2.3. ABTS Radical Scavenging Activity Assay
2.4. Total Phenolic Compound Assay (TPC)
2.5. Antimicrobial Activity
2.5.1. Microorganism Cultures
2.5.2. Minimum Inhibitory Concentration (MIC) Assay
2.6. Statistical Analysis
3. Results
3.1. Antioxidant Activity
3.1.1. ABTS Radical Scavenging Activity Assay
3.1.2. Total Phenolic Compound Assay (TPC)
3.2. Antimicrobial Activity
Minimum Inhibitory Concentration (MIC) Assay
4. Discussion
4.1. Species-Specific Notes
4.2. Additional Considerations
5. Conclusions and Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 18 November 2022).
- Pérez-Lloréns, J.L.; Mouritsen, O.G.; Rhatigan, P.; Cornish, M.L.; Critchley, A.T. Seaweeds in Mythology, Folklore, Poetry, and Life. J. Appl. Phycol. 2020, 32, 3157–3182. [Google Scholar] [CrossRef]
- Mouritsen, O.G. Seaweeds, Edible, Available & Sustainable; University of Chicago Press: Chicago, IL, USA, 2013. [Google Scholar]
- O’Connor, K. Seaweed: A Global History; Reaction Books: London, UK, 2017. [Google Scholar]
- Pérez-Lloréns, J.L.; Hernaández, I.; Vergara, J.J.; Brun, F.G.; Leoón, A. Those Curious and Delicious Seaweeds: A Fascinating Voyage from Biology to Gastronomy; Editorial UCA: Cádiz, Spain, 2018; ISBN 8498286662. [Google Scholar]
- Mouritsen, O.G.; Rhatigan, P.; Cornish, M.L.; Critchley, A.T.; Pérez-Lloréns, J.L. Saved by Seaweeds: Phyconomic Contributions in Times of Crises. J. Appl. Phycol. 2021, 33, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L. Characterization of Bioactive Components in Edible Algae. Mar. Drugs 2020, 18, E65. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L. Nutritional Composition of the Main Edible Algae. In Therapeutic. and Nutritional Uses of Algae; Pereira, L., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 65–127. [Google Scholar]
- Pereira, L. Edible Seaweeds of the World, 1st ed.; Pereira, L., Ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4987-3047-1. [Google Scholar]
- MacArtain, P.; Gill, C.I.R.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Cherry, P.; O’hara, C.; Magee, P.J.; Mcsorley, E.M.; Allsopp, P.J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef] [PubMed]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef]
- Lopez-Santamarina, A.; Miranda, J.M.; del Carmen Mondragon, A.; Lamas, A.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Potential Use of Marine Seaweeds as Prebiotics: A Review. Molecules 2020, 25, E1004. [Google Scholar] [CrossRef] [Green Version]
- Kalasariya, H.S.; Pereira, L. Dermo-Cosmetic Benefits of Marine Macroalgae-Derived Phenolic Compounds. Appl. Sci. 2022, 12, 11954. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Goncąlves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Aschwin, E.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs 2012, 10, 1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, A.G.; Otero, P.; Echave, J.; Carreira-Casais, A.; Chamorro, F.; Collazo, N.; Jaboui, A.; Lourenço-Lopes, C.; Simal-Gandara, J.; Prieto, M.A. Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Mar. Drugs 2021, 19, 188. [Google Scholar] [CrossRef] [PubMed]
- Cikoš, A.-M.; Šubarić, D.; Roje, M.; Babić, J.; Jerković, I.; Jokić, S. Recent Advances on Macroalgal Pigments and Their Biological Activities (2016–2021). Algal. Res. 2022, 65, 102748. [Google Scholar] [CrossRef]
- Hafting, J.T.; Craigie, J.S.; Stengel, D.B.; Loureiro, R.R.; Buschmann, A.H.; Yarish, C.; Edwards, M.D.; Critchley, A.T. Prospects and Challenges for Industrial Production of Seaweed Bioactives. J. Phycol. 2015, 51, 821–837. [Google Scholar] [CrossRef]
- Leandro, A.; Pereira, L.; Gonçalves, A.M.M. Diverse Applications of Marine Macroalgae. Mar. Drugs 2020, 18, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Januário, A.P.; Félix, R.; Félix, C.; Reboleira, J.; Valentão, P.; Lemos, M.F.L. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021, 13, 1930. [Google Scholar] [CrossRef]
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential Use of Seaweed Bioactive Compounds in Skincare—A Review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L. Seaweeds as Source of Bioactive Substances and Skin Care Therapy—Cosmeceuticals, Algotheraphy, and Thalassotherapy. Cosmetics 2018, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.G.; Pereira, L. Review of Marine Algae as Source of Bioactive Metabolites: A Marine Biotechnological Approach. In Marine Algae: Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology; Pereira, L., Neto, J.M., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 195–227. [Google Scholar]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Pacheco, D.; Gonçalves, A.M.M.; Pereira, L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life 2020, 10, 19. [Google Scholar] [CrossRef]
- Vega, J.; Schneider, G.; Moreira, B.R.; Herrera, C.; Bonomi-Barufi, J.; Figueroa, F.L. Mycosporine-like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. Appl. Sci. 2021, 11, 5112. [Google Scholar] [CrossRef]
- Isaka, S.; Cho, K.; Nakazono, S.; Abu, R.; Ueno, M.; Kim, D.; Oda, T. Antioxidant and Anti-Inflammatory Activities of Porphyran Isolated from Discolored Nori (Porphyra yezoensis). Int. J. Biol. Macromol. 2015, 74, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Zhen, A.X.; Hyun, Y.J.; Piao, M.J.; Sameera Madushan Fernando, P.D.; Kang, K.A.; Ahn, M.J.; Yi, J.M.; Kang, H.K.; Koh, Y.S.; Lee, N.H.; et al. Eckol Inhibits Particulate Matter 2.5-Induced Skin Keratinocyte Damage via MAPK Signaling Pathway. Mar. Drugs 2019, 17, 444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornish, M.L.; Garbary, D.J. Antioxidants from Macroalgae: Potential Applications in Human Health and Nutrition. Algae 2010, 25, 155–171. [Google Scholar] [CrossRef]
- Silva, J.P.; Alves, C.; Pinteus, S.; Silva, J.; Valado, A.; Pedrosa, R.; Pereira, L. Antioxidant and Antitumor Potential of Wild and IMTA-Cultivated Osmundea pinnatifida. J. Ocean. Limnol. 2019, 37, 825–835. [Google Scholar] [CrossRef]
- Horta, A.; Pinteus, S.; Alves, C.; Fino, N.; Silva, J.; Fernandez, S.; Rodrigues, A.; Pedrosa, R. Antioxidant and Antimicrobial Potential of the Bifurcaria bifurcata Epiphytic Bacteria. Mar. Drugs 2014, 12, 1676–1689. [Google Scholar] [CrossRef] [Green Version]
- Pinteus, S.; Silva, J.; Alves, C.; Horta, A.; Fino, N.; Rodrigues, A.I.; Mendes, S.; Pedrosa, R. Cytoprotective Effect of Seaweeds with High Antioxidant Activity from the Peniche Coast (Portugal). Food Chem. 2017, 218, 591–599. [Google Scholar] [CrossRef]
- Valentão, P.; Trindade, P.; Gomes, D.; Guedes de Pinho, P.; Mouga, T.; Andrade, P.B. Codium tomentosum and Plocamium cartilagineum: Chemistry and Antioxidant Potential. Food Chem. 2010, 119, 1359–1368. [Google Scholar] [CrossRef]
- Vega, J.; Álvarez-Gómez, F.; Güenaga, L.; Figueroa, F.L.; Gómez-Pinchetti, J.L. Antioxidant Activity of Extracts from Marine Macroalgae, Wild-Collected and Cultivated, in an Integrated Multi-Trophic Aquaculture System. Aquaculture 2020, 522, 1–10. [Google Scholar] [CrossRef]
- Afonso, C.; Correia, A.P.; Freitas, M.V.; Mouga, T.; Baptista, T. In Vitro Evaluation of the Antibacterial and Antioxidant Activities of Extracts of Gracilaria gracilis with a View into Its Potential Use as an Additive in Fish Feed. Appl. Sci. 2021, 11, 6642. [Google Scholar] [CrossRef]
- Pinteus, S.; Alves, C.; Rodrigues, A.; Mouga, T.; Pedrosa, R. Algae from the Peniche Coast (Portugal) Exhibit New Promising Antibacterial Activities against Fish Pathogenic Bacteria. Curr. Opin. Biotechnol. 2011, 22, 33–34. [Google Scholar] [CrossRef]
- Pinteus, S.; Alves, C.; Monteiro, H.; Araújo, E.; Horta, A.; Pedrosa, R. Asparagopsis armata and Sphaerococcus coronopifolius as a Natural Source of Antimicrobial Compounds. World J. Microbiol. Biotechnol. 2015, 31, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Matias, M.; Pinteus, S.; Martins, A.; Silva, J.; Alves, C.; Mouga, T.; Gaspar, H.; Pedrosa, R. Gelidiales Are Not Just Agar—Revealing the Antimicrobial Potential of Gelidium corneum for Skin Disorders. Antibiotics 2022, 11, 481. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.; Alves, C.; Horta, A.; Pinteus, S.; Silva, J.; Culioli, G.; Thomas, O.P.; Pedrosa, R. Antitumor and Antimicrobial Potential of Bromoditerpenes Isolated from the Red Alga, Sphaerococcus coronopifolius. Mar. Drugs 2015, 13, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Mendes, M.; Pereira, R.; Sousa Pinto, I.; Carvalho, A.P.; Gomes, A.M. Antimicrobial Activity and Lipid Profile of Seaweed Extracts from the North Portuguese Coast. Int. Food Res. J. 2013, 20, 3337–3345. [Google Scholar]
- Gomes, L.; Monteiro, P.; Cotas, J.; Gonçalves, A.M.M.; Fernandes, C.; Gonçalves, T.; Pereira, L. Seaweeds’ Pigments and Phenolic Compounds with Antimicrobial Potential. Biomol. Concepts 2022, 13, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.; Fernandes, C.; Silva, P.; Pereira, L.; Gonçalves, T. Antifungal Activity of Carrageenan Extracts from the Red Alga Chondracanthus teedei Var. lusitanicus. J Appl. Phycol. 2016, 28, 2991–2998. [Google Scholar] [CrossRef]
- Valado, A.; Pereira, M.; Caseiro, A.; Figueiredo, J.P.; Loureiro, H.; Almeida, C.; Cotas, J.; Pereira, L. Effect of Carrageenans on Vegetable Jelly in Humans with Hypercholesterolemia. Mar. Drugs 2019, 18, 19. [Google Scholar] [CrossRef] [Green Version]
- Valado, A.M.; Pereira, L.; Cotas, J. Bioactivity of Carrageenans in Metabolic Syndrome and Cardiovascular Diseases. Nutraceuticals 2022, 2, 441–454. [Google Scholar] [CrossRef]
- Pereira, L.; Valado, A. The Seaweed Diet in Prevention and Treatment of the Neurodegenerative Diseases. Mar. Drugs 2021, 19, 128. [Google Scholar] [CrossRef]
- Cotas, J.; Marques, V.; Afonso, M.B.; Rodrigues, C.M.P.; Pereira, L. Antitumour Potential of Gigartina pistillata Carrageenans against Colorectal Cancer Stem Cell-Enriched Tumourspheres. Mar. Drugs 2020, 18, 50. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Pinteus, S.; Horta, A.; Pedrosa, R. High Cytotoxicity and Anti-Proliferative Activity of Algae Extracts on an in Vitro Model of Human Hepatocellular Carcinoma. Springerplus 2016, 5, 1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.; Pinteus, S.; Rodrigues, A.; Horta, A.; Pedrosa, R. Algae from Portuguese Coast Presented High Cytotoxicity and Antiproliferative Effects on an in Vitro Model of Human Colorectal Cancer. Pharmacogn. Res. 2018, 10, 24–30. [Google Scholar] [CrossRef]
- Alves, C.; Serrano, E.; Silva, J.; Rodrigues, C.; Pinteus, S.; Gaspar, H.; Botana, L.M.; Alpoim, M.C.; Pedrosa, R. Sphaerococcus coronopifolius Bromoterpenes as Potential Cancer Stem Cell-Targeting Agents. Biomed. Pharmacother. 2020, 128, 110275. [Google Scholar] [CrossRef]
- Cotas, J.; Pacheco, D.; Gonçalves, A.M.M.; Silva, P.; Carvalho, L.G.; Pereira, L. Seaweeds’ Nutraceutical and Biomedical Potential in Cancer Therapy: A Concise Review. J. Cancer Metastasis Treat 2021, 7, 13. [Google Scholar] [CrossRef]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of Enzyme- and Ultrasound-Assisted Extraction Methods on Biological Properties of Red, Brown, and Green Seaweeds from the Central West Coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef]
- Kulshreshtha, G.; Rathgeber, B.; Stratton, G.; Thomas, N.; Evans, F.; Critchley, A.; Hafting, J.; Prithiviraj, B. Feed Supplementation with Red Seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, Affects Performance, Egg Quality, and Gut Microbiota of Layer Hens. Poult Sci. 2014, 93, 2991–3001. [Google Scholar] [CrossRef]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Extraction of Biomolecules from Seaweeds. In Seaweed Sustainability: Food and Non-Food Applications; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: London, UK, 2015; pp. 243–269. ISBN 9780124199583. [Google Scholar]
- Patarra, R.F.; Paiva, L.; Neto, A.I.; Lima, E.; Baptista, J. Nutritional Value of Selected Macroalgae. J. Appl. Phycol. 2011, 23, 205–208. [Google Scholar] [CrossRef] [Green Version]
- Campos, A.M.; Matos, J.; Afonso, C.; Gomes, R.; Bandarra, N.M.; Cardoso, C. Azorean Macroalgae (Petalonia binghamiae, Halopteris scoparia and Osmundea pinnatifida) Bioprospection: A Study of Fatty Acid Profiles and Bioactivity. Int J. Food Sci. Technol. 2019, 54, 880–890. [Google Scholar] [CrossRef]
- Young, R.M.; von Salm, J.L.; Amsler, M.O.; Lopez-Bautista, J.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Site-Specific Variability in the Chemical Diversity of the Antarctic Red Alga Plocamium cartilagineum. Mar. Drugs 2013, 11, 2126–2139. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.A.Z.; Colepicolo, P.; Pupo, D.; Fujii, M.T.; de Pereira, C.M.P.; Mesko, M.F. Antarctic Red Macroalgae: A Source of Polyunsaturated Fatty Acids. J. Appl. Phycol. 2017, 29, 759–767. [Google Scholar] [CrossRef]
- Aslam, M.N.; Kreider, J.M.; Paruchuri, T.; Bhagavathula, N.; DaSilva, M.; Zernicke, R.F.; Goldstein, S.A.; Varani, J. A Mineral-Rich Extract from the Red Marine Algae Lithothamnion calcareum Preserves Bone Structure and Function in Female Mice on a Western-Style Diet. Calcif. Tissue Int. 2010, 86, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, O.; Stenson, B.; Widaa, A.; O’Gorman, D.M.; O’Brien, F.J. Incorporation of the Natural Marine Multi-Mineral Dietary Supplement Aquamin Enhances Osteogenesis and Improves the Mechanical Properties of a Collagen-Based Bone Graft Substitute. J. Mech. Behav. Biomed Mater. 2015, 47, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Pereira Da Silva, R.; Sayuri, G.; Kawai, D.; Dias De Andrade, F.R.; Danilo, V.; Bezzon, N.; Gomes Ferraz, H. Characterisation and Traceability of Calcium Carbonate from the Seaweed Lithothamnium calcareum. Solids 2021, 2, 192–211. [Google Scholar] [CrossRef]
- Santos, S.A.O.; Vilela, C.; Freire, C.S.R.; Abreu, M.H.; Rocha, S.M.; Silvestre, A.J.D. Chlorophyta and Rhodophyta Macroalgae: A Source of Health Promoting Phytochemicals. Food. Chem. 2015, 183, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Mu, T.; Sun, H.; Garcia-Vaquero, M. Evaluation of the Chemical Composition and Nutritional Potential of Brown Macroalgae Commercialised in China. Algal. Res. 2022, 64, 102683. [Google Scholar] [CrossRef]
- Neubig, R.R.; Spedding, M.; Kenakin, T.; Christopoulos, A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharm. Rev. 2003, 55, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Pearson, J. Susceptibility Testing: Accurate and Reproducible Minimum Inhibitory Concentration (MIC) and Non-Inhibitory Concentration (NIC) Values. J. Appl. Microbiol. 2000, 88, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Lipinska, A.P.; Collén, J.; Krueger-Hadfield, S.A.; Mora, T.; Ficko-Blean, E. To Gel or Not to Gel: Differential Expression of Carrageenan-Related Genes between the Gametophyte and Tetasporophyte Life Cycle Stages of the Red Alga Chondrus crispus. Sci. Rep. 2020, 10, 11498. [Google Scholar] [CrossRef] [PubMed]
- Davison, I.R.; Pearson, G.A. Stress Tolerance in Intertidal Seaweeds. J. Phycol. 1996, 32, 197–211. [Google Scholar] [CrossRef]
- Bischof, K.; Gómez, I.; Molis, M.; Hanelt, D.; Karsten, U.; Lüder, U.; Roleda, M.Y.; Zacher, K.; Wiencke, C. Ultraviolet Radiation Shapes Seaweed Communities. Rev. Env. Sci. Biotechnol. 2006, 5, 141–166. [Google Scholar] [CrossRef] [Green Version]
- Flores-Molina, M.R.; Thomas, D.; Lovazzano, C.; Núñez, A.; Zapata, J.; Kumar, M.; Correa, J.A.; Contreras-Porcia, L. Desiccation Stress in Intertidal Seaweeds: Effects on Morphology, Antioxidant Responses and Photosynthetic Performance. Aquat. Bot. 2014, 113, 90–99. [Google Scholar] [CrossRef]
- Collén, J.; Davison, I.R. Stress Tolerance and Reactive Oxygen Metabolism in the Intertidal Red Seaweeds Mastocarpus stellatus and Chondrus crispus. Plant Cell Env. 1999, 22, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Peat, S.; Turvey, J.R.; Rees, D.A. Carbohydrates of the Red Alga, Porphyra umbilicalis. J. Chem. Soc. 1961, 8, 1590–1595. [Google Scholar] [CrossRef]
- Vega, J.; Bonomi-Barufi, J.; Gómez-Pinchetti, J.L.; Figueroa, F.L. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar. Drugs 2020, 18, 659. [Google Scholar] [CrossRef]
- Brawley, S.H.; Blouin, N.A.; Ficko-Blean, E.; Wheeler, G.L.; Lohr, M.; Goodson, H.V.; Jenkins, J.W.; Blaby-Haas, C.E.; Helliwell, K.E.; Chan, C.X.; et al. Insights into the Red Algae and Eukaryotic Evolution from the Genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proc. Natl. Acad. Sci. USA 2017, 114, E6361–E6370. [Google Scholar] [CrossRef] [Green Version]
- Erturk, O.; Taş, B. Antibacterial and Antifungal Effects of Some Marine Algae. Kafkas Univ. Vet Fak. Derg. 2011, 17, S121–S124. [Google Scholar]
- Rodrigues, D.; Costa-Pinto, A.R.; Sousa, S.; Vasconcelos, M.W.; Pintado, M.M.; Pereira, L.; Rocha-Santos, T.A.P.; da Costa, J.P.; Silva, A.M.S.; Duarte, A.C.; et al. Sargassum muticum and Osmundea pinnatifida Enzymatic Extracts: Chemical, Structural, and Cytotoxic Characterization. Mar. Drugs 2019, 17, 209. [Google Scholar] [CrossRef] [Green Version]
- Aziz, E.; Batool, R.; Khan, M.U.; Rauf, A.; Akhtar, W.; Heydari, M.; Rehman, S.; Shahzad, T.; Malik, A.; Mosavat, S.H.; et al. An Overview on Red Algae Bioactive Compounds and Their Pharmaceutical Applications. J. Complement. Integr. Med. 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Paiva, L.; Patarra, R.; Neto, A.; Lima, E.; Baptista, J. Antioxidant Activity of Macroalgae from the Azores. Arquipelago. Life Mar. Sci. 2012, 29, 1–6. [Google Scholar]
- Salhi, G.; Zbakh, H.; Moussa, H.; Hassoun, M.; Bochkov, V.; Ciudad, C.J.; Noé, V.; Riadi, H. Antitumoral and Anti-Inflammatory Activities of the Red Alga Sphaerococcus coronopifolius. Eur. J. Integr. Med. 2018, 18, 66–74. [Google Scholar] [CrossRef]
- Smyrniotopoulos, V.; Quesada, A.; Vagias, C.; Moreau, D.; Roussakis, C.; Roussis, V. Cytotoxic Bromoditerpenes from the Red Alga Sphaerococcus coronopifolius. Tetrahedron 2008, 64, 5184–5190. [Google Scholar] [CrossRef]
- Alves, C.; Silva, J.; Pintéus, S.; Guedes, R.A.; Guedes, R.C.; Alvariño, R.; Freitas, R.; Goettert, M.I.; Gaspar, H.; Alfonso, A.; et al. Bromoditerpenes from the Red Seaweed Sphaerococcus coronopifolius as Potential Cytotoxic Agents and Proteasome Inhibitors and Related Mechanisms of Action. Mar. Drugs 2022, 20, 652. [Google Scholar] [CrossRef] [PubMed]
- Smyrniotopoulos, V.; de Andrade Tomaz, A.C.; de Fátima Vanderlei De Souza, M.; da Cunha, E.V.L.; Kiss, R.; Mathieu, V.; Ioannou, E.; Roussis, V. Halogenated Diterpenes with In Vitro Antitumor Activity from the Red Alga Sphaerococcus coronopifolius. Mar. Drugs 2020, 18, 29. [Google Scholar] [CrossRef] [Green Version]
- Smyrniotopoulos, V.; Vagias, C.; Bruyère, C.; Lamoral-Theys, D.; Kiss, R.; Roussis, V. Structure and In Vitro Antitumor Activity Evaluation of Brominated Diterpenes from the Red Alga Sphaerococcus coronopifolius. Bioorg. Med. Chem. 2010, 18, 1321–1330. [Google Scholar] [CrossRef]
- Etahiri, S.; Bultel-Poncé, V.; Caux, C.; Guyot, M. New Bromoditerpenes from the Red Alga Sphaerococcus coronopifolius. J. Nat. Prod. 2001, 64, 1024–1027. [Google Scholar] [CrossRef]
- Prousis, K.C.; Kikionis, S.; Ioannou, E.; Morgana, S.; Faimali, M.; Piazza, V.; Calogeropoulou, T.; Roussis, V. Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius. Mar. Drugs 2022, 20, 7. [Google Scholar] [CrossRef]
- Quémener, M.; Kikionis, S.; Fauchon, M.; Toueix, Y.; Aulanier, F.; Makris, A.M.; Roussis, V.; Ioannou, E.; Hellio, C. Antifouling Activity of Halogenated Compounds Derived from the Red Alga Sphaerococcus coronopifolius: Potential for the Development of Environmentally Friendly Solutions. Mar. Drugs 2022, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Piazza, V.; Roussis, V.; Garaventa, F.; Greco, G.; Smyrniotopoulos, V.; Vagias, C.; Faimali, M. Terpenes from the Red Alga Sphaerococcus coronopifolius Inhibit the Settlement of Barnacles. Mar. Biotechnol. 2011, 13, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Shilling, A.; Salm, J.; Young, R.; Amsler, M.; Amsler, C.; McClintock, J.; Baker, B. Isolation and Characterization of Halogenated Monoterpenes in the Investigation of the Ecological Relationship between Antarctic Plocamium cartilagineum and Paradexamine fissicauda. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Shilling, A.J.; von Salm, J.L.; Sanchez, A.R.; Kee, Y.; Amsler, C.D.; McClintock, J.B.; Baker, B.J. Anverenes B–E, New Polyhalogenated Monoterpenes from the Antarctic Red Alga Plocamium cartilagineum. Mar. Drugs 2019, 17, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Inés, C.; Argandoña, V.H.; Rovirosa, J.; San-Martín, A.; Díaz-Marrero, A.R.; Cueto, M.; González-Coloma, A. Cytotoxic Activity of Halogenated Monoterpenes from Plocamium cartilagineum. Z. Fur Nat.-Sect. C J. Biosci. 2004, 59, 339–344. [Google Scholar] [CrossRef]
- Motti, C.A.; Thomas-Hall, P.; Hagiwara, K.A.; Simmons, C.J.; Willis, R.; Wright, A.D. Accelerated Identification of Halogenated Monoterpenes from Australian Specimens of the Red Algae Plocamium hamatum and Plocamium costatum. J. Nat. Prod. 2014, 77, 1193–1200. [Google Scholar] [CrossRef]
- Ko, S.H.; Lim, Y.H.; Kim, E.J.; Ko, Y.W.; Hong, I.S.; Kim, S.; Jung, Y.J. Antarctic Marine Algae Extracts as a Potential Natural Resource to Protect Epithelial Barrier Integrity. Mar. Drugs 2022, 20, 562. [Google Scholar] [CrossRef]
- Shobier, A.H.; Ismail, M.M.; Hassan, S.W.M. Variation in Anti-Inflammatory, Anti-Arthritic, and Antimicrobial Activities of Different Extracts of Common Egyptian Seaweeds with an Emphasis on Their Phytochemical and Heavy Metal Contents. Biol. Trace Elem. Res. 2022. [Google Scholar] [CrossRef]
- Betul, A. Antioxidant Properties Of Some Macroalgae Harvested From The Iskenderun Bay Turkey. Fresenius Env. Bull. 2022, 31, 2145–2152. [Google Scholar] [CrossRef]
- el Shafay, S.; El-Sheekh, M.; Bases, E.; El-Shenody, R. Antioxidant, Antidiabetic, Anti-Inflammatory and Anticancer Potential of Some Seaweed Extracts. Food Sci. Technol. 2021, 42. [Google Scholar] [CrossRef]
- Abdel Haleem, D.R.; el Tablawy, N.H.; Ahmed Alkeridis, L.; Sayed, S.; Saad, A.M.; El-Saadony, M.T.; Farag, S.M. Screening and Evaluation of Different Algal Extracts and Prospects for Controlling the Disease Vector Mosquito Culex pipiens L. Saudi J. Biol. Sci. 2022, 29, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Rifi, M.; Radwan, Z.; AlMonla, R.; Fajloun, Z.; Sabatier, J.M.; Kouzayha, A.; El-Sabban, M.; Mawlawi, H.; Dassouki, Z. The Lebanese Red Algae Jania rubens: Promising Biomolecules against Colon Cancer Cells. Molecules 2022, 27, 6617. [Google Scholar] [CrossRef] [PubMed]
- Chenniappan, S.; Durairaj, G.; Kumaran, A.V. Antibacterial Activity of Jania rubens from Gulf of Mannar, South Coast of India. Indian J. Nat. Prod. 2021, 12, 451–458. [Google Scholar]
- Athanasiadis, A.; Ballantine, D.L. The Genera Melyvonnea Gen. Nov. and Mesophyllum s.s. (Melobesioideae, Corallinales, Rhodophyta) Particularly from the Central Atlantic Ocean. Nord. J. Bot. 2014, 32, 385–436. [Google Scholar] [CrossRef]
- Peña, V.; de Clerck, O.; Afonso-Carrillo, J.; Ballesteros, E.; Bárbara, I.; Barreiro, R.; le Gall, L. An Integrative Systematic Approach to Species Diversity and Distribution in the Genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. Eur. J. Phycol. 2015, 50, 20–36. [Google Scholar] [CrossRef]
- Sayın, S. Antimicrobial Activities of Some Marine Macroalgae Species from Iskenderun Bay. Turk. J. Agric.-Food Sci. Technol. 2021, 9, 792–796. [Google Scholar] [CrossRef]
- Torres, M.D.; Flórez-Fernández, N.; Domínguez, H. Chondrus crispus Treated with Ultrasound as a Polysaccharides Source with Improved Antitumoral Potential. Carbohydr. Polym. 2021, 273, 118588. [Google Scholar] [CrossRef]
- Freitas, M.V.; Pacheco, D.; Cotas, J.; Mouga, T.; Afonso, C.; Pereira, L. Red Seaweed Pigments from a Biotechnological Perspective. Phycology 2021, 2, 1–29. [Google Scholar] [CrossRef]
- Freitas, M.V.; Inácio, L.G.; Martins, M.; Afonso, C.; Pereira, L.; Mouga, T. Primary Composition and Pigments of 11 Red Seaweed Species from the Center of Portugal. J. Mar. Sci. Eng. 2022, 10, 11680. [Google Scholar] [CrossRef]
Species | Order | Code | Harvest Season | Coordinates |
---|---|---|---|---|
Porphyra umbilicalis (Linnaeus) J. Agadh | Bangiales | PoUm | Winter | 39°19′10″ N, 9°21′24″ W |
Ceramium ciliatum (J. Ellis) Ducluzeau | Ceramiales | CeCi | Summer | 39°19′27″ N, 9°21′39″ W |
Osmundea pinnatifida (Hudson) Stackhouse | Ceramiales | OsPi | Winter | 39°22′07″ N, 9°22′41″ W |
Chondrus crispus Stackhouse | Gigartinales | ChCr | Spring | 40°09′57″ N, 8°53′05″ W |
Sphaerococcus coronopifolius Stackhouse | Gigartinales | SpCo | Summer | 39°22′3″ N, 9°22′26″ W |
Plocamium cartilagineum (Linnaeus) P.S. Dixon | Plocamiales | PlCa | Winter | 39°19′10″ N, 9°21′24″ W |
Corallina officinalis J. Ellis and Solander 1786 | Corallinales | CoOf | Winter | 39°19′10″ N, 9°21′24″ W |
Ellisolandia elongata (J. Ellis and Solander) K.R. Hind and G.W. Saunders | Corallinales | ElEl | Winter | 39°19′10″ N, 9°21′24″ W |
Amphiroa rigida J.V. Lamouroux | Corallinales | AmRi | Winter | 39°19′10″ N, 9°21′24″ W |
Jania rubens (Linnaeus) J.V. Lamouroux | Corallinales | JaRu | Winter | 39°19′10″ N, 9°21′24″ W |
Mesophyllum lichenoides (J. Ellis) Me. Lemoine | Hapalidiales | MeLi | Winter | 39°19′10″ N, 9°21′24″ W |
Liagora viscida (Forsskål) C. Agardh | Nemaliales | LiVi | Summer | 39°22′3″ N, 9°22′26″ W |
Species Code | B. subtilis | S. cerevisiae | ||
---|---|---|---|---|
MIC (mg·mL−1) | Growth (%) | MIC (mg·mL−1) | Growth (%) | |
PoUm | 3.13 | 86.60 ± 2.12 ** | - | - |
CeCi | 6.25 | 65.29 ± 8.56 | - | - |
OsPi | 1.56 | 80.80 ± 2.69 ** | 12.5 | 81.98 ± 0.23 |
ChCr | 12.5 | 73.35 ± 2.12 | - | - |
SpCo | 0.02 | 80.82 ± 3.63 ** | - | - |
PlCa | 3.13 | 84.03 ± 4.13 ** | - | - |
CoOf | 6.25 | 83.14 ± 3.49 ** | - | - |
ElEl | - | - | - | - |
AmRi | 6.25 | 83.17 ± 1.48 ** | - | - |
JaRu | 6.25 | 67.59 ± 1.42 | - | - |
MeLi | 12.5 | 18.02 ± 2.49 | 1.56 | 11.91 ± 2.97 |
LiVi | 6.25 | 73.31 ± 5.33 | 12.5 | 82.79 ± 3.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, M.V.; Inácio, L.G.; Ruas, A.; Silva, I.A.; Mouga, T.; Pereira, L.; Afonso, C. Antioxidant and Antimicrobial Properties of Selected Red Seaweeds from Central Portugal. Appl. Sci. 2023, 13, 157. https://doi.org/10.3390/app13010157
Freitas MV, Inácio LG, Ruas A, Silva IA, Mouga T, Pereira L, Afonso C. Antioxidant and Antimicrobial Properties of Selected Red Seaweeds from Central Portugal. Applied Sciences. 2023; 13(1):157. https://doi.org/10.3390/app13010157
Chicago/Turabian StyleFreitas, Marta V., Leonardo G. Inácio, Ana Ruas, Isabela A. Silva, Teresa Mouga, Leonel Pereira, and Clélia Afonso. 2023. "Antioxidant and Antimicrobial Properties of Selected Red Seaweeds from Central Portugal" Applied Sciences 13, no. 1: 157. https://doi.org/10.3390/app13010157
APA StyleFreitas, M. V., Inácio, L. G., Ruas, A., Silva, I. A., Mouga, T., Pereira, L., & Afonso, C. (2023). Antioxidant and Antimicrobial Properties of Selected Red Seaweeds from Central Portugal. Applied Sciences, 13(1), 157. https://doi.org/10.3390/app13010157