Elemental Abundances of Moon Samples Based on Statistical Distributions of Analytical Data
Abstract
:1. Introduction
2. Samples and Analytical Methods
2.1. Samples
2.2. Analytical Methods
3. Statistical Methods and Results
3.1. Elemental Abundances in Moon Samples
3.2. Elemental Abundances in Moon Samples with Low-Ca and High-Ca
4. Discussion
4.1. Geochemical Signatures of Elemental Abundances
4.1.1. Major Oxides
4.1.2. REEs
4.1.3. Trace Elements
4.1.4. Other Trace Elements
4.2. Chang’E-5 Samples
4.2.1. Elemental Concentrations
4.2.2. Geochemical Signatures
5. Conclusions
- (1)
- The elemental abundances of moon samples, including the moon sample, the low-Ca moon sample, and the high-Ca moon sample, were derived from statistical distributions of analytical data reported in the literature. The classification criterion of low-Ca and high-Ca types of moon samples was 13.5% CaO content.
- (2)
- With respect to the MORB of the Earth, the moon samples (including the Moon, low-Ca, and high-Ca samples) were rich in Cr, REEs, Th, U, Pb, Zr, Hf, Cs, Ba, W, and Be and poor in Na, V, Cu, and Zn in terms of their concentrations, and were enriched in Cr and depleted in Na, K, Rb, P, V, Cu, and Zn in the spider diagrams.
- (3)
- The CE5 sample is the low-Ca type of moon sample and is clearly rich in Ti, Fe, Mn, P, Sc, REEs, Th, U, Nb, Ta, Zr, Hf, Sr, Ba, W, and Be and poor in Mg, Al, Cr, and Ni in terms of their concentrations relative to the moon and the low-Ca moon samples. If compared with only the moon sample, the CE5 sample is also clearly rich in K, REE, and P.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tian, H.C.; Wang, H.; Chen, Y.; Yang, W.; Zhou, Q.; Zhang, C.; Lin, H.L.; Huang, C.; Wu, T.S.; Jia, L.H.; et al. Non-KREEP origin for Chang’E-5 basalts in the Procellarum KREEP Terrane. Nature 2021, 600, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.L.; Zhou, Q.; Liu, Y.; Xiao, Z.Y.; Lin, Y.T.; Li, J.H.; Ma, H.X.; Tang, G.Q.; Guo, S.; Tang, X.; et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 2021, 600, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Che, X.C.; Nemchin, A.; Liu, D.Y.; Long, T.; Wang, C.; Norman, M.D.; Joy, K.H.; Tartese, R.; Head, J.; Jolliff, B.; et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science 2021, 374, 887–890. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; He, H.C.; Ji, J.L.; Lin, Y.T.; Hui, H.J.; Anand, M.; Tartèse, R.; Yan, Y.H.; Hao, J.L.; Li, R.Y.; et al. A dry lunar mantle reservoir for young mare basalts of Chang’E-5. Nature 2021, 600, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Hu, H.; Yang, M.F.; Pei, Z.Y.; Zhou, Q.; Ren, X.; Liu, B.; Liu, D.W.; Zeng, X.G.; Zhang, G.L.; et al. Characteristics of the lunar samples returned by the Chang’E-5 mission. Natl. Sci. Rev. 2022, 9, nwab188. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.G.; Xiao, C.J.; Wang, P.S.; Li, C.L.; Zhou, Q. Instrumental Neutron Activation Analysis of Chang’E-5 Lunar Regolith Samples. J. Am. Chem. Soc. 2022, 144, 5478–5484. [Google Scholar] [CrossRef]
- Zong, K.Q.; Wang, Z.C.; Li, J.W.; He, Q.; Harry, B.; Hu, Z.C.; He, T.; Cao, K.N.; She, Z.B.; Wu, X.; et al. Bulk compositions of the Chang’E-5 lunar soil: Insights into chemical homogeneity, exotic addition, and origin of landing site basalts. Geochim. Cosmochim. Acta 2022, 335, 284–296, ISSN 0016-7037. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Li, J.H. Non-destructive Identification and Quantification of Ilmenite from a Single Particle of the Chang’E-5 Lunar Soil Sample. At. Spectrosc. 2022, 43, 284–291. [Google Scholar]
- Su, B.; Yuan, J.; Chen, Y.; Yang, W.; Ross, N.M.; Hui, H.J.; Wang, H.; Tian, H.C.; Li, X.H.; Wu, F.Y. Fusible mantle cumulates trigger young mare volcanism on the Cooling Moon. Sci. Adv. 2022, 8, eabn2103. [Google Scholar] [CrossRef]
- Yang, W.; Chen, Y.; Wang, H.; Tian, H.C.; Hui, H.J.; Xiao, Z.Y.; Wu, S.T.; Zhang, D.; Zhou, Q.; Ma, X.H.; et al. Geochemistry of impact glasses in the Chang’e-5 regolith: Constraints on impact melting and the petrogenesis of local basalt. Geochim. Cosmochim. Acta 2022, 335, 183–196. [Google Scholar] [CrossRef]
- Tian, H.C.; Yang, W.; Zhang, D.; Zhang, H.J.; Jia, L.H.; Wu, S.T.; Lin, Y.T.; Li, X.H.; Wu, F.Y. Petrogenesis of Chang’E-5 mare basalts: Clues from the trace elements in plagioclase. Am. Mineral. 2022, 600, 59–63. [Google Scholar]
- Palme, H.; Lodders, K.; Jones, A. Solar system abundances of the elements. In Treatise on Geochemistry, Volume 1: Meteorites, Comets, and Planets; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 15–36. [Google Scholar]
- Palme, H.; O’Neill, H.S.C. Cosmochemical Estimates of Mantle Composition. In Treatise on Geochemistry, Volume 3: The Crust; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–39. [Google Scholar]
- White, W.M.; Klein, E.M. Composition of the oceanic crust. In Treatise on Geochemistry, Volume 3: The Crust; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 457–496. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry, Volume 3: The Crust; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–64. [Google Scholar]
- Chi, Q.H.; Yan, M.C. Handbook of Elemental Abundance for Applied Geochemistry; Geological Publishing House: Beijing, China, 2007; pp. 1–148. [Google Scholar]
- Rose, H.J.; Cuttitta, F.; Dwornik, E.J.; Carron, M.K.; Christian, R.P.; Lindsay, J.R.; Ligon, D.T.; Larson, R.R. Semimicro chemical and X-ray fluorescence analysis of lunar samples. Science 1970, 167, 520–521. [Google Scholar] [CrossRef] [PubMed]
- Rose, H.J.; Cuttitta, F.; Annell, C.S.; Carron, M.K.; Christian, R.P.; Dwornik, E.J.; Greenland, L.P.; Ligon, D.T. Compositional data for twenty-one Fra Mauro lunar materials. In Proceedings of the 2nd Lunar Science Conference, Houston, TX, USA, 10–13 January 1972; Volume 2, pp. 1215–1229. [Google Scholar]
- Rose, H.J.; Cuttitta, F.; Berman, S.; Carron, M.K.; Christian, R.P.; Dwornik, E.J.; Greenland, L.P.; Ligon, D.T. Compositional data for twenty-two Apollo 16 samples. In Proceedings of the 2nd Lunar Science Conference, Houston, TX, USA, 5–8 March 1973; Volume 2, pp. 1149–1158. [Google Scholar]
- Rose, H.J.; Cuttitta, F.; Berman, S.; Carron, M.K.; Christian, R.P.; Dwornik, E.J.; Greenland, L.P. Chemical composition of rocks and soils at Taurus-Littrow. In Proceedings of the 2nd Lunar Science Conference, Houston, TX, USA, 18–22 March 1974; Volume 2, pp. 1119–1133. [Google Scholar]
- Rose, H.J.; Christian, R.P.; Dwomik, E.J.; Schnepfe, M.M. Major elemental analysis of some Apollo 15, 16, and 17 samples (abs). Lunar Sci. 1975, 6, 686–688. [Google Scholar]
- Taylor, S.R.; Gorton, M.P.; Muir, P.; Nance, W.B.; Rudowski, R.; Ware, N. Composition of the Descartes region, lunar highlands. Geochim. Cosmochim. Acta 1973, 37, 2665–2683. [Google Scholar] [CrossRef]
- Korotev, R.L. Some things we can infer about the Moon from the composition of the Apollo 16 regolith. Meteorit. Planet. Sci. 1997, 32, 447–478. [Google Scholar] [CrossRef]
- Warren, P.H.; Taylor, G.J. The Moon. In Treatise on Geochemistry, Volume 1: Meteorites, Comets, and Planets; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 559–599. [Google Scholar]
- Crawford, I.A.; Joy, K.H.; Anand, M. Lunar Exploration. In Encyclopedia of the Solar System, Part V: Earth and Moon as Planets; Spohn, T., Breuer, D., Johnson, T.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 555–579. [Google Scholar]
- LSPET. Preliminary examination of lunar samples from Apollo 11. Science 1965, 165, 1211–1227. [Google Scholar]
- LSPET. Preliminary examination of lunar samples from Apollo 12. Science 1970, 167, 1325–1339. [Google Scholar] [CrossRef]
- LSPET. Preliminary examination of lunar samples from Apollo 14. Science 1971, 173, 681–693. [Google Scholar] [CrossRef]
- LSPET. The Apollo 15 lunar samples: A preliminary description. Science 1972, 175, 363–375. [Google Scholar] [CrossRef]
- LSPET. The Apollo 16 lunar samples: Petrographic and chemical description. Science 1973, 179, 23–34. [Google Scholar] [CrossRef]
- LSPET. Apollo 17 lunar samples: Chemical and petrographic description. Science 1973, 182, 659–690. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.P. Preliminary data on lunar ground brought to Earth by Automatic Probe “Luna 16”. In Proceedings of the 2nd Lunar Science Conference, Houston, TX, USA, 11–14 January 1971; Volume 2, pp. 1–16. [Google Scholar]
- Vinogradov, A.P. Preliminary data on lunar soil collected by the Luna 20 unmanned spacecraft. Geochim. Et Cosmochim. Acta 1973, 37, 721–729. [Google Scholar] [CrossRef]
- Barsukov, V.L. Preliminary data for the regolith core brought to earth by the automatic lunar station Luna 24. In Proceedings of the 8th Lunar Science Conference, Houston, TX, USA, 14–18 March 1977; Volume 2, pp. 3303–3318. [Google Scholar]
- Qian, Y.; Xiao, L.; Wang, Q.; Head, J.W.; Yang, R.; Kang, Y.; van der Bogert, C.H.; Hiesinger, H.; Lai, X.; Wang, G.; et al. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 2021, 561, 116855. [Google Scholar] [CrossRef]
- Dickinson, T.; Taylor, G.J.; Keil, K.; Bild, R.W. Germanium abundances in lunar basalts-Evidence of mantle metasomatism? In Proceedings of the 19th Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 14–18 March 1989; Volume 19, pp. 189–198. [Google Scholar]
- Neal, C.R. Interior of the Moon: The presence of garnet in the primitive deep lunar mantle. J. Geophys. Res. Planets 2001, 106, 27865–27885. [Google Scholar] [CrossRef]
- Albee, A.L.; Chodos, A.A.; Gancarz, A.J.; Haines, E.L.; Papanastassiou, D.A.; Ray, L.; Tera, F.; Wasserburg, G.J.; Wen, T. Mineralogy, petrology, and chemistry of a Luna 16 basaltic fragment, sample B-1. Earth Planet. Sci. Lett. 1972, 13, 353–367, ISSN 0012-821X. [Google Scholar] [CrossRef]
- Barsukov, V.L.; Tarasov, L.S.; Dmitriiev, L.V.; Kolesov, G.M.; Shevaleevsky, I.D.; Garanin, A.V. The geochemical and petrochemical features of regolith and rocks from Mare Crisium (preliminary data). In Proceedings of the 8th Lunar Science Conference, Houston, TX, USA, 14–18 March 1977; Volume 2, pp. 3319–3332. [Google Scholar]
- Helmke, P.A.; Blanchard, D.P.; Jacobs, J.W.; Haskin, L.A. Rare earths, other trace elements and iron in Luna 20 samples. Geochim. Cosmochim. Acta 1973, 37, 869–874. [Google Scholar] [CrossRef]
- Compston, W.; Berry, H.; Vernon, M.J.; Bruce, W. Rubidium-strontium chronology and chemistry of lunar material from the Ocean of Storms. In Proceedings of the 2nd Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 11–14 January 1971; Volume 2, p. 1471. [Google Scholar]
- Taylor, S.R.; Kaye, M.; Muir, P.; Nance, W.; Rudowski, R.; Ware, N. Composition of the lunar uplands: Chemistry of Apollo 14 samples from Fra Mauro. In Proceedings of the 3rd Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 10–13 January 1972; Volume 3, p. 1231. [Google Scholar]
- Wänke, H.; Palme, H.; Kruse, H.; Baddenhausen, H.; Cendales, M.; Dreibus, G.; Hofmeister, H.; Jagoutz, E.; Palme, C.; Spettel, B.; et al. Chemistry of lunar highland rocks-A refined evaluation of the composition of the primary matter. In Proceedings of the 7th Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 15–19 March 1976; Volume 7, pp. 3479–3499. [Google Scholar]
- Gong, Q.J.; Deng, J.; Yang, L.Q.; Zhang, J.; Wang, Q.F.; Zhang, G.X. Behavior of major and trace elements during weathering of sericite–quartz schist. J. Asian Earth Sci. 2011, 42, 1–13, ISSN 1367-9120. [Google Scholar] [CrossRef]
- Gong, Q.J.; Yan, T.T.; Wu, X.; Li, R.K.; Wang, X.Q.; Liu, N.Q.; Li, X.L.; Wu, Y.; Li, J. Geochemical gene: A promising concept in discrimination and traceability of geological materials. Appl. Geochem. 2022, 136, 105133. [Google Scholar] [CrossRef]
- Aitchison, J. The Single Principle of Compositional Data Analysis, Continuing Fallacies, Confusions and Misunderstandings and Some Suggested Remedies. 2008. Available online: https://hdl.handle.net/10256/706 (accessed on 15 May 2020).
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueras, G.; Barcelo-Vidal, C. Isometric logration transformations for compositional data analysis. Math. Geol. 2003, 35, 279–300. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Meyer, C., Jr.; Hubbard, N.J. High potassium, high phosphorus glass as an important rock type in the Apollo 12 soil samples. Meteoritics 1970, 5, 210–211. [Google Scholar]
- Meyer, C., Jr.; Brett, R.; Hubbard, N.J.; Morrison, D.A.; McKay, D.S.; Aitken, F.K.; Takeda, H.; Schonfeld, E. Mineralogy, chemistry, and origin of the KREEP component in soil samples from the Ocean of Storms. In Proceedings of the 2nd Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 11–14 January 1971; Volume 2, p. 393. [Google Scholar]
- Qiao, L.; Chen, J.; Xu, L.Y.; Wan, S.; Cao, H.J.; Li, B.; Li, Z.C. Geology of the Chang’e-5 landing site: Constraints on the sources of samples returned from a young nearside mare. Icarus 2021, 364, 114480. [Google Scholar] [CrossRef]
- He, Q.; Li, Y.H.; Baziotis, I.; Qian, Y.Q.; Xiao, L.; Wang, Z.C.; Zhang, W.; Luo, B.J.; Neal, C.R.; Day, J.M.D.; et al. Detailed petrogenesis of the unsampled Oceanus Procellarum: The case of the Chang’e-5 mare basalts. Icarus 2022, 383, 115082. [Google Scholar] [CrossRef]
- Mitchell, R.N. Chang’E-5 reveals the Moon’s secrets to a longer life. Innovation 2021, 2, 100177. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Fa, W.Z.; Gong, S.X.; Liu, Y.; Qiao, L.; Tai, Y.S.; Zhang, F.; Zou, Y.L. Thicknesses of Mare basalts in the Chang’E-5 landing region: Implications for the late-stage volcanism on the Moon. J. Geophys. Res. Planets 2022, 127, e2022JE007314. [Google Scholar] [CrossRef]
References | Rose et al. [17,18,19,20,21] | Taylor et al. [22] | Korotev [23] | Warren and Taylor [24] | |
---|---|---|---|---|---|
Samples | Apollo Missions | Lunar Highland | Apollo 16 Soils | Mare Basalts | Highland Regolith |
Counts of samples/records | <30 | 10 | <50 | <220 | 10 |
Counts of major oxides | 11 | 8 | 8 | 8 | 9 |
Counts of trace elements | 14 | 16 | 12 | 10 | 12 |
Counts of rare earth elements | 3 | 14 | 8 | 5 | 9 |
Mission | Longitude | Latitude | Counts of Samples | Weight of Samples (kg) |
---|---|---|---|---|
Apollo 11 | 23.47297 | 0.67408 | 183 | 21.55 |
Apollo 12 | −23.42157 | −3.01239 | 218 | 34.30 |
Apollo 14 | −17.47136 | −3.6453 | 272 | 42.80 |
Apollo 15 | 3.63386 | 26.13222 | 364 | 76.70 |
Apollo 16 | 15.49812 | −8.97301 | 685 | 95.20 |
Apollo 17 | 30.77168 | 20.1908 | 476 | 110.40 |
Luna 16 | 56.3 | −0.68 | 33 | 0.101 |
Luna 20 | 56.5 | 3.57 | 34 | 0.030 |
Luna 24 | 62.2 | 12.75 | 67 | 0.170 |
Chang’E-5 | −51.916 | 43.058 | 33 | 1.731 |
Sum | - | - | 2365 | 382.982 |
Oxides/ | Moon | Low-Ca | High-Ca | CE5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Elements | Abundance | n0 | n | Abundance | n0 | n | Abundance | n0 | n | Abundance |
SiO2 | 44.89 | 1392 | 1375 | 44.78 | 1029 | 1015 | 45 | 346 | 327 | 41.51 |
Al2O3 | 17.49 | 1885 | 1885 | 14.17 | 1379 | 1377 | 27.66 | 466 | 447 | 10.93 |
FeO | 12.15 | 2062 | 2061 | 14.59 | 1456 | 1454 | 4.98 | 511 | 464 | 22.7 |
TiO2 | 2.52 | 1851 | 1723 | 3.98 | 1383 | 1379 | 0.431 | 444 | 419 | 5.43 |
CaO | 12.11 | 1979 | 1959 | 10.93 | 1468 | 1440 | 15.69 | 511 | 493 | 11.36 |
MgO | 8.83 | 1842 | 1793 | 9.77 | 1359 | 1302 | 5.75 | 462 | 461 | 6.21 |
Na2O | 0.443 | 2040 | 1984 | 0.449 | 1452 | 1422 | 0.458 | 509 | 485 | 0.434 |
K2O | 0.11 | 1769 | 1478 | 0.171 | 1277 | 1181 | 0.088 | 409 | 393 | 0.175 |
P2O5 | 0.123 | 596 | 512 | 0.18 | 476 | 461 | 0.106 | 120 | 120 | 0.248 |
MnO | 0.169 | 1763 | 1757 | 0.194 | 1347 | 1341 | 0.061 | 362 | 336 | 0.285 |
Cr2O3 | 0.269 | 2012 | 1974 | 0.316 | 1384 | 1364 | 0.095 | 458 | 445 | 0.199 |
Total | 99.1 | - | - | 99.53 | - | - | 100.32 | - | - | 99.49 |
Ag | 5.1 | 112 | 112 | 11.1 | 38 | 38 | 12 | 1 | 1 | - |
As | 0.054 | 79 | 79 | 0.057 | 52 | 52 | 0.027 | 14 | 14 | - |
Au | 3.91 | 572 | 528 | 4.24 | 366 | 347 | 4.46 | 87 | 87 | 8.8 |
B | 3.88 | 20 | 19 | 3.42 | 19 | 18 | 39 | 1 | 1 | - |
Ba | 162 | 1488 | 1466 | 202 | 962 | 957 | 106 | 307 | 297 | 388 |
Be | 1.35 | 186 | 185 | 2.03 | 86 | 85 | 1.06 | 22 | 22 | 2.84 |
Bi | 0.0006 | 95 | 93 | 0.0167 | 5 | 5 | - | 0 | 0 | - |
Br | 0.076 | 84 | 84 | 0.065 | 38 | 38 | 0.09 | 9 | 9 | - |
Cd | 12.4 | 145 | 144 | 59.9 | 32 | 32 | 7.2 | 21 | 21 | - |
Cl | 13.5 | 78 | 78 | 12 | 52 | 52 | 22.7 | 13 | 13 | - |
Co | 32.2 | 1675 | 1608 | 35.1 | 1096 | 1062 | 25.4 | 322 | 322 | 37.7 |
Cr | 1546 | 1970 | 1933 | 2046 | 1384 | 1354 | 607 | 429 | 429 | 1359 |
Cs | 0.136 | 583 | 579 | 0.242 | 247 | 247 | 0.118 | 152 | 152 | 0.205 |
Cu | 9.45 | 448 | 437 | 9.5 | 238 | 229 | 4.77 | 83 | 83 | 12.2 |
F | 67 | 48 | 48 | 86 | 37 | 37 | 29.2 | 11 | 11 | - |
Ga | 4.59 | 613 | 574 | 5.55 | 384 | 357 | 3.42 | 100 | 100 | 5.79 |
Ge | 0.08 | 181 | 181 | 0.087 | 75 | 75 | 0.219 | 15 | 15 | - |
Hf | 5.5 | 1401 | 1372 | 6.84 | 960 | 954 | 2.95 | 248 | 248 | 13.8 |
In | 0.0054 | 159 | 159 | 0.0081 | 40 | 40 | 0.0043 | 14 | 14 | - |
Ir | 8.1 | 602 | 559 | 8.6 | 367 | 359 | 10.2 | 116 | 116 | 3.61 |
Li | 9.5 | 347 | 340 | 12.3 | 174 | 174 | 6.24 | 65 | 65 | 15.4 |
Mn | 1167 | 1761 | 1734 | 1441 | 1347 | 1325 | 490 | 341 | 320 | 2205 |
Mo | 0.119 | 89 | 85 | 0.239 | 23 | 23 | 0.014 | 2 | 2 | 0.033 |
Nb | 12.2 | 545 | 537 | 15.7 | 333 | 332 | 6.67 | 96 | 96 | 35.6 |
Ni | 213 | 1413 | 1323 | 208 | 837 | 806 | 288 | 330 | 329 | 139 |
Os | 1.67 | 103 | 103 | 15.7 | 12 | 12 | 7.5 | 1 | 1 | - |
P | 267 | 840 | 840 | 626 | 476 | 476 | 395 | 115 | 115 | 1080 |
Pb | 1.42 | 215 | 211 | 2.44 | 81 | 80 | 2.08 | 47 | 47 | 1.89 |
Pd | 3.53 | 136 | 136 | 7.3 | 44 | 44 | 2.9 | 2 | 2 | - |
Pt | 9.3 | 13 | 13 | 9.4 | 12 | 12 | 9 | 1 | 1 | - |
Rb | 2.92 | 854 | 845 | 4.34 | 447 | 447 | 1.97 | 142 | 139 | 5.63 |
Re | 0.167 | 124 | 124 | 0.464 | 30 | 30 | 2.31 | 2 | 2 | - |
Rh | 16.7 | 2 | 2 | 16.7 | 2 | 2 | - | 0 | 0 | - |
Ru | 13.7 | 29 | 28 | 10.1 | 19 | 18 | 23.7 | 10 | 10 | - |
S | 819 | 248 | 235 | 881 | 193 | 189 | 592 | 46 | 45 | - |
Sb | 0.0054 | 182 | 182 | 0.068 | 25 | 25 | 0.0079 | 16 | 16 | - |
Sc | 25.6 | 1613 | 1600 | 36.1 | 1039 | 1035 | 8.3 | 347 | 334 | 63.5 |
Se | 0.068 | 146 | 142 | 0.346 | 32 | 32 | 0.204 | 7 | 7 | - |
Sn | 0.497 | 79 | 79 | 0.361 | 23 | 23 | 0.074 | 21 | 21 | - |
Sr | 150 | 1337 | 1305 | 148 | 871 | 857 | 165 | 264 | 261 | 309 |
Ta | 0.82 | 1193 | 1176 | 1.08 | 838 | 827 | 0.384 | 220 | 219 | 1.81 |
Te | 0.0053 | 94 | 93 | 0.027 | 1 | 1 | 0.5 | 1 | 1 | - |
Th | 1.99 | 1140 | 1127 | 2.36 | 755 | 752 | 1.58 | 262 | 255 | 4.98 |
Ti | 11009 | 1850 | 1835 | 17063 | 1383 | 1378 | 2581 | 429 | 408 | 32526 |
Tl | 0.00324 | 106 | 106 | 0.011 | 14 | 14 | 0.0006 | 1 | 1 | - |
U | 0.63 | 986 | 959 | 0.88 | 589 | 589 | 0.465 | 196 | 185 | 1.36 |
V | 64 | 1077 | 1070 | 79 | 763 | 751 | 19.8 | 188 | 187 | 93.1 |
W | 0.207 | 170 | 170 | 0.331 | 92 | 92 | 0.229 | 12 | 12 | 0.54 |
Zn | 13 | 643 | 640 | 18.5 | 341 | 340 | 6.6 | 92 | 92 | 14.5 |
Zr | 222 | 979 | 961 | 288 | 601 | 598 | 134 | 222 | 222 | 523 |
La | 12.3 | 1553 | 1532 | 14.7 | 1050 | 1041 | 8.57 | 284 | 249 | 35.6 |
Ce | 35.1 | 1429 | 1407 | 42.7 | 946 | 942 | 22.5 | 265 | 246 | 97.7 |
Pr | 5 | 196 | 195 | 7.25 | 87 | 87 | 2.9 | 30 | 26 | 12.6 |
Nd | 24.6 | 1102 | 1081 | 31.2 | 752 | 740 | 13.7 | 159 | 149 | 59.7 |
Sm | 7.5 | 1473 | 1403 | 9.48 | 984 | 944 | 3.89 | 261 | 248 | 16.9 |
Eu | 1.35 | 1499 | 1443 | 1.52 | 1004 | 997 | 1.07 | 269 | 261 | 2.58 |
Gd | 9.8 | 346 | 335 | 12.5 | 143 | 141 | 4.67 | 54 | 52 | 19.3 |
Tb | 1.67 | 1315 | 1268 | 2.12 | 886 | 851 | 0.8 | 255 | 249 | 3.28 |
Dy | 10.5 | 1103 | 1017 | 13.3 | 759 | 689 | 5.04 | 163 | 152 | 20.4 |
Ho | 2.36 | 540 | 490 | 3.04 | 346 | 302 | 1.13 | 74 | 71 | 4.14 |
Er | 6.5 | 375 | 348 | 8.4 | 170 | 157 | 3.11 | 43 | 40 | 11.2 |
Tm | 0.9 | 377 | 314 | 1.15 | 256 | 208 | 0.458 | 45 | 42 | 1.48 |
Yb | 5.84 | 1680 | 1652 | 7.39 | 1126 | 1121 | 2.88 | 303 | 301 | 9.75 |
Lu | 0.84 | 1414 | 1312 | 1.07 | 942 | 855 | 0.413 | 263 | 245 | 1.36 |
Y | 60 | 426 | 407 | 73 | 259 | 243 | 31.4 | 67 | 64 | 116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Gong, Q.; Liu, N.; Jiang, B.; Li, J.; Wu, Y.; Huang, J.; Gu, W. Elemental Abundances of Moon Samples Based on Statistical Distributions of Analytical Data. Appl. Sci. 2023, 13, 360. https://doi.org/10.3390/app13010360
Hou Z, Gong Q, Liu N, Jiang B, Li J, Wu Y, Huang J, Gu W. Elemental Abundances of Moon Samples Based on Statistical Distributions of Analytical Data. Applied Sciences. 2023; 13(1):360. https://doi.org/10.3390/app13010360
Chicago/Turabian StyleHou, Zhiguan, Qingjie Gong, Ningqiang Liu, Biao Jiang, Jie Li, Yuan Wu, Jiaxin Huang, and Weixuan Gu. 2023. "Elemental Abundances of Moon Samples Based on Statistical Distributions of Analytical Data" Applied Sciences 13, no. 1: 360. https://doi.org/10.3390/app13010360
APA StyleHou, Z., Gong, Q., Liu, N., Jiang, B., Li, J., Wu, Y., Huang, J., & Gu, W. (2023). Elemental Abundances of Moon Samples Based on Statistical Distributions of Analytical Data. Applied Sciences, 13(1), 360. https://doi.org/10.3390/app13010360