Fatty Acid Profile, Mineral Composition, and Health Implications of Consuming Dried Sago Grubs (Rhynchophorus ferrugineus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and Proximate Composition
2.2. Fatty Acid Analysis
2.3. Dietary Indicators
2.4. Mineral Analysis
2.5. Statistical Analysis
3. Results
3.1. Fatty Acid Profile
Fatty Acid | % Total Fatty Acid | g FA/100 g Dried Insect Material | |
---|---|---|---|
Lauric acid | 12:0 | 0.90 ± 0.72 | 0.54 ± 0.43 |
Myristic acid | 14:0 | 2.39 ± 0.06 | 1.41 ± 0.04 |
Palmitic acid | 16:0 | 42.6 ± 0.65 | 25.2 ± 0.38 |
Stearic acid | 18:0 | 1.30 ± 0.04 | 0.77 ± 0.32 |
Arachidic acid | 20:0 | 0.18 ± 0.01 | 0.11 ± 0.01 |
Saturated fatty acid | SFA | 47.3 ± 0.23 | 28.1 ± 0.15 |
Cis-palmitoleic acid | 16:1 cω7 | 12.2 ± 0.21 | 7.22 ± 0.13 |
Cis-oleic acid | 18:1 cω9 | 39.0 ± 0.55 | 23.1 ± 0.08 |
Monounsaturated fatty acid | MUFA | 51.2 ± 0.76 | 30.3 ± 0.45 |
Cis-linoleic acid | 18:2 cω6 | 1.02 ± 0.13 | 0.61 ± 0.08 |
𝛼-linolenic acid | 18:3 ω3 | 0.50 ± 0.05 | 0.28 ± 0.03 |
Polyunsaturated fatty acid | PUFA | 1.50 ± 0.18 | 0.89 ± 0.11 |
Nutritional indices | |||
Polyunsaturated fatty acid/saturated fatty acid ratio | PUFA: SFA | 0.03 ± 0.00 | - |
Omega 6: Omega 3 ratio | ω-6/ω-3 | 2.17 ± 0.43 | - |
Index of atherogenicity | IA | 1.01 ± 0.01 | - |
Index of thrombogenicity | IT | 1.65 ± 0.01 | - |
Hypocholesterolemic/ hypercholesterolemic ratio | H/H | 0.88 ± 0.01 | - |
Health-promoting index | HPI | 0.99 ± 0.01 | - |
3.2. Fatty Acid Nutritional Indices
3.2.1. ω-6/ω-3
3.2.2. PUFA: SFA Ratio
3.2.3. Index of Atherogenicity
3.2.4. Index of Thrombogenicity
3.2.5. Hypocholesterolemic/Hypercholesterolemic Ratio
3.2.6. Health-Promoting Index
3.3. Mineral Contents
3.3.1. Essential Macro-Minerals
3.3.2. Essential Micro-Minerals
3.3.3. Heavy/Toxic Metals
Macrominerals (mg/kg DW) | ||||||
---|---|---|---|---|---|---|
Sodium | Magnesium | Phosphorus | Potassium | Calcium | ||
SGP | 772 ± 12.5 | 1657 ± 46.1 | 2950 ± 10.0 | 8053 ± 290.2 | 477 ± 24.4 | |
1 DORM-4 | 14,052 ± 1006.0 | 897 ± 76.0 | 7113 ± 497.0 | 13,352 ± 962.0 | 2391 ± 181.0 | |
Recovery (%) | 100 | 99 | 89 | 86 | 101 | |
2 Limit of detection | 4 | 2 | 10 | 4 | 8 | |
3 Limit of quantification | 12 | 6 | 30 | 12 | 24 | |
Microminerals (mg/kg DW) | ||||||
Chromium | Copper | Iron | Zinc | Selenium | Manganese | |
SGP | 0.25 ± 0.03 | 8.3 ± 0.32 | 22 ± 0.97 | 83 ± 0.55 | 0.03 ± 0.003 | 8.8 ± 0.27 |
1 DORM-4 | 1.75 ± 0.20 | 15 ± 0.90 | 333 ± 0.90 | 51 ± 4.80 | 3.2 ± 0.500 | 3.04 ± 0.20 |
Recovery (%) | 94 | 97 | 97 | 98 | 93 | 96 |
2 Limit of detection | 0.02 | 0.06 | 0.8 | 2 | 0.02 | 0.02 |
3 Limit of quantification | 0.06 | 0.20 | 2.0 | 6 | 0.06 | 0.06 |
Heavy metals (mg/kg DW) | ||||||
Arsenic | Vanadium | Lead | Cadmium | |||
SGP | 0.17 ± 0.003 | 0.01 ± 0.003 | 0.56 ± 0.013 | 0.04 ± 0.01 | ||
1 DORM-4 | 6.4 ± 0.330 | 1.52 ± 0.090 | 0.34 ± 0.040 | 0.30 ± 0.02 | ||
Recovery (%) | 93 | 97 | 85 | 100 | ||
2 Limit of detection | 0.010 | 0.006 | - | - | ||
3 Limit of quantification | 0.06 | 0.02 | 0.03 | 0.03 |
3.3.4. Non-Essential Minerals
Co | B | Ni | Ga | Li | Rb | Sr | Y | Sn | Sb | Mo | Ag | Cs | Ba | La | Ce | Pr | Nd | Sm | Gd | Dy | Eu | Ho | Er | Tm | Yb | Lu | Th | U | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SGP | 0.12 ± 0.01 | 2.40 ± 0.27 | 0.44 ± 0.03 | <0.01 | <0.02 | 2.68 ± 0.20 | 1.34 ± 0.036 | 0.03 ± 0.003 | 0.01 | <0.01 | 0.06 ± 0.006 | <0.01 | 0.008 ± 0.001 | 13.30 ± 1.453 | 0.032 ± 0.007 | 0.075 ± 0.012 | 0.010 ± 0.001 | 0.040 ± 0.005 | 0.009 ± 0.001 | 0.009 ± 0.0016 | 0.006 ± 0.0003 | 0.002 ± 0.0004 | 0.001 ± 0.0002 | 0.003 ± 0.0002 | <0.001 | 0.0024 ± 0.0002 | <0.001 | 0.004 ± 0.002 | 0.03 ± 0.0005 |
DORM-4 | 0.25 ± 0.02 | 11 | 1.3± 0.099 | 0.38 ± 0.029 | 1.1 ± 0.09 | 5.7 ± 0.26 | 9.5 ± 0.65 | 0.17 ± 0.03 | 0.072 ± 0.011 | <0.002 | 0.26 ± 0.023 | 0.025 ± 0.02 | 0.075 ± 0.01 | 4.8 ± 0.24 | 0.46 ± 0.09 | 0.98 ± 0.21 | 0.12 ± 0.025 | 0.47 ± 0.11 | 0.096 ± 0.02 | 0.085 ± 0.01 | 0.060 ± 0.01 | 0.019 ± 0.002 | 0.008 ± 0.0001 | 0.019 ± 0.0002 | <0.002 | 0.012 ± 0.010 | <0.002 | 0.16 ± 0.010 | 0.05 ± 0.0006 |
Recovery (%) | 99 | - | 94 | - | 96 | - | 94 | - | 119 | - | 88 | 101 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | 106 |
Limit of detection | 0.004 | 1 | 0.04 | 0.01 | 0.02 | 0.010 | 0.010 | 0.004 | 0.01 | 0.01 | 0.008 | 0.01 | 0.001 | 0.001 | 0.001 | 0.02 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 |
Limit of quantitation | 0.01 | 3 | 0.1 | 0.03 | 0.06 | 0.03 | 0.03 | 0.01 | 0.03 | 0.03 | 0.02 | 0.03 | 0.003 | 0.03 | 0.003 | 0.006 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.003 | 0.006 | 0.003 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaijan, M.; Panpipat, W. Techno-biofunctional aspect of seasoning powder from farm-raised sago palm weevil (Rhynchophorus ferrugineus) larvae. J. Insects Food Feed. 2021, 7, 187–195. [Google Scholar] [CrossRef]
- Hanboonsong, Y.; Jamjanya, T.; Durst, P.B. Six-legged livestock: Edible insect farming, collection and marketing in thailand. RAP Publ. 2013, 3, 8–21. [Google Scholar]
- Chaijan, M.; Chumthong, K.; Kongchoosi, N.; Chinarak, K.; Panya, A.; Phonsatta, N.; Cheong, L.Z.; Panpipat, W. Characterisation of ph-shift-produced protein isolates from sago palm weevil (Rhynchophorus ferrugineus) larvae. J. Insects Food Feed. 2022, 8, 313–324. [Google Scholar] [CrossRef]
- Chinarak, K.; Chaijan, M.; Panpipat, W. Farm-raised sago palm weevil (Rhynchophorus ferrugineus) larvae: Potential and challenges for promising source of nutrients. J. Food Compos. Anal. 2020, 92, 103542. [Google Scholar] [CrossRef]
- Leatemia, J.A.; Patty, J.A.; Masauna, E.D.; Noya, S.H.; Hasinu, J.V. Utilization of sago grub (Rhynchophorus ferrugineus Olivier) (Coleoptera: Curculionidae) as an alternative source of protein. IOP Conf. Series Earth Environ. Sci. 2021, 800, 012028. [Google Scholar] [CrossRef]
- Okunowo, W.O.; Olagboye, A.; Afolabi, L.; Oyedeji, A. Nutritional value of Rhynchophorus phoenicis (f.) larvae, an edible insect in nigeria. Afr. Entomol. 2017, 25, 156–163. [Google Scholar] [CrossRef]
- Ekpo, K.E.; Onigbinde, A.O. Nutritional potentials of the larva of Rhynchophorus phoenicis (F). Pak. J. Nutr. 2005, 4, 287–290. [Google Scholar] [CrossRef]
- Köhler, R.; Irias-Mata, A.; Ramandey, E.; Purwestri, R.; Biesalski, H.K. Nutrient composition of the Indonesian sago grub (Rhynchophorus bilineatus). Int. J. Trop. Insect Sci. 2020, 40, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Nirmala, I.; Pramono, M.S. Sago worms as a nutritious traditional and alternative food for rural children in Southeast Sulawesi, Indonesia. Asia Pac. J. Clin. Nutr. 2017, 26, S40–S49. [Google Scholar]
- Yhoung-Aree, J. Edible insects in thailand: Nutritional values and health concerns. Edible For. Insects 2010, 1, 201–216. [Google Scholar]
- Bang, A.; Courchamp, F. Industrial rearing of edible insects could be a major source of new biological invasions. Ecol. Lett. 2021, 24, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Chinarak, K.; Panpipat, W.; Summpunn, P.; Panya, A.; Phonsatta, N.; Cheong, L.-Z.; Chaijan, M. Insights into the effects of dietary supplements on the nutritional composition and growth performance of sago palm weevil (Rhynchophorus ferrugineus) larvae. Food Chem. 2021, 363, 130279. [Google Scholar] [CrossRef] [PubMed]
- AOAC; Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Kavle, R.R.; Carne, A.; Bekhit, A.E.-D.A.; Kebede, B.; Agyei, D. Proximate composition and lipid nutritional indices of larvae and pupae of the edible Huhu beetle (Prionoplus reticularis) endemic to New Zealand. J. Food Compos. Anal. 2022, 110. [Google Scholar] [CrossRef]
- Ulbricht, T.; Southgate, D. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Burrow, K.; Young, W.; McConnell, M.; Carne, A.; Barr, D.; Reid, M.; Bekhit, A.E.-D. The Distribution of Essential, Trace, and Nonessential Minerals in Weanling Male Rats Fed Sheep or Cow Milk. Mol. Nutr. Food Res. 2018, 62, 1800482. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Homolková, D.; Božik, M.; Plachý, V.; Vrabec, V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J. Food Compos. Anal. 2020, 92, 103570. [Google Scholar] [CrossRef]
- Lawal, K.G.; Kavle, R.R.; Akanbi, T.O.; Mirosa, M.; Agyei, D. Enrichment in specific fatty acids profile of Tenebrio molitor and Hermetia illucens larvae through feeding. Futur. Foods 2021, 3, 100016. [Google Scholar] [CrossRef]
- Chinarak, K.; Panpipat, W.; Panya, A.; Phonsatta, N.; Cheong, L.-Z.; Chaijan, M. Improved long-chain omega-3 polyunsaturated fatty acids in sago palm weevil (Rhynchophorus ferrugineus) larvae by dietary fish oil supplementation. Food Chem. 2022, 393, 133354. [Google Scholar] [CrossRef]
- Santos, R.; Gagliardi, A.; Xavier, H.; Magnoni, C.; Cassani, R.; Lottenberg, A.; Filho, A.C.; Araújo, D.; Cesena, F.; Alves, R.; et al. I Diretriz sobre o consumo de Gorduras e Saúde Cardiovascular. Arq. Bras. Cardiol. 2013, 100, 1–40. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional value and chemical composition of larvae, pupae, and adults of worker honey bee, Apis mellifera ligustica as a sustainable food source. J. Asia-Pac. Èntomol. 2016, 19, 487–495. [Google Scholar] [CrossRef]
- Sales-Campos, H.; de Souza, R.; Peghini, C.; da Silva, S.; Cardoso, R.; Cristina. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Tang, C.; Yang, D.; Liao, H.; Sun, H.; Liu, C.; Wei, L.; Li, F. Edible insects as a food source: A review. Food Prod. Process. Nutr. 2019, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Okunowo, W.O.; Olagboye, A.M. Proximate composition and nutritional profile of Rhynchophorus palmarum. FASEB J. 2016, 30, 854. [Google Scholar]
- De Castro, R.J.S.; Ohara, A.; Aguilar, J.G.S.; Domingues, M.A.F. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Anim. Front. 2015, 5, 20–24. [Google Scholar]
- Chen, J.; Liu, H. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J. Appl. Phycol. 2010, 23, 797–810. [Google Scholar] [CrossRef]
- WHO. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; World Health Organization: Geneva, Switzerland, 2003; Volume 916. [Google Scholar]
- Chantawannakul, P. From entomophagy to entomotherapy. Front. Biosci. Landmark 2020, 25, 179–200. [Google Scholar] [CrossRef]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef] [Green Version]
- Ray, M.; Gangopadhyay, D. Effect of maturation stage and sex on proximate, fatty acid and mineral composition of eri silkworm (Samia ricini) from india. J. Food Compos. Anal. 2021, 100, 103898. [Google Scholar] [CrossRef]
- Ghosh, S.; Lee, S.-M.; Jung, C.; Meyer-Rochow, V.B. Nutritional composition of five commercial edible insects in South Korea. J. Asia-Pac. Entomol. 2017, 20, 686–694. [Google Scholar] [CrossRef]
- Mlček, J.; Adámková, A.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Knížková, I. Fat from tenebrionidae bugs—Sterols content, fatty acid profiles, and cardiovascular risk indexes. Pol. J. Food Nutr. Sci. 2019, 69, 247–254. [Google Scholar] [CrossRef]
- Kulma, M.; Kouřimská, L.; Plachý, V.; Božik, M.; Adámková, A.; Vrabec, V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2018, 272, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Osimani, A.; Garofalo, C.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2016, 243, 1157–1171. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Wondołowska-Grabowska, A. Quality evaluation indices for soybean oil in relation to cultivar, application of n fertiliser and seed inoculation with bradyrhizobium japonicum. Foods 2022, 11, 762. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.E.; Vasconcelos, M.A.D.S.; Ribeiro, M.D.A.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.D.M. Nutritional and lipid profiles in marine fish species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Orkusz, A. Edible insects versus meat—Nutritional comparison: Knowledge of their composition is the key to good health. Nutrients 2021, 13, 1207. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.A.E.; Beitz, D.C. Physical and Sensory Properties of Dairy Products from Cows with Various Milk Fatty Acid Compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Bobe, G.; Zimmerman, S.; Hammond, E.; Freeman, A.; Porter, P.; Luhman, C.; Beitz, D. Butter Composition and Texture from Cows with Different Milk Fatty Acid Compositions Fed Fish Oil or Roasted Soybeans. J. Dairy Sci. 2007, 90, 2596–2603. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, D.; Di Trana, A.; Di Napoli, M.; Sepe, L.; Cecchini, S.; Rossi, R.; Claps, S. Comparison of cheeses from goats fed 7 forages based on a new health index. J. Dairy Sci. 2019, 102, 6790–6801. [Google Scholar] [CrossRef]
- Haas, M.; Forbush III, B. The na-k-cl cotransporter of secretory epithelia. Annu. Rev. Physiol. 2000, 62, 515–534. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Yeh, H.-C.; Edelman, D.; Brancati, F. Potassium and risk of type 2 diabetes. Expert Rev. Endocrinol. Metab. 2011, 6, 665–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavle, R.R.; Carne, A.; Bekhit, A.E.A.; Kebede, B.; Agyei, D. Macronutrients and mineral composition of wild harvested Prionoplus reticularis edible insect at various development stages: Nutritional and mineral safety implications. Int. J. Food Sci. Technol. 2022, 57, 6270–6278. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Bergman, C.; Gray-Scott, D.; Chen, J.-J.; Meacham, S. What is Next for the Dietary Reference Intakes for Bone Metabolism Related Nutrients Beyond Calcium: Phosphorus, Magnesium, Vitamin D, and Fluoride? Crit. Rev. Food Sci. Nutr. 2009, 49, 136–144. [Google Scholar] [CrossRef]
- Roy, P.K.; Lall, S.P. Dietary phosphorus requirement of juvenile haddock (Melanogrammus aeglefinus L.). Aquaculture 2003, 221, 451–468. [Google Scholar] [CrossRef]
- Sunyecz, J.A. The use of calcium and vitamin d in the management of osteoporosis. Ther. Clin. Risk Manag. 2008, 4, 827. [Google Scholar] [CrossRef] [Green Version]
- Köhler, R.; Kariuki, L.; Lambert, C.; Biesalski, H. Protein, amino acid and mineral composition of some edible insects from Thailand. J. Asia-Pacific Èntomol. 2019, 22, 372–378. [Google Scholar] [CrossRef]
- Vorland, C.J.; Stremke, E.R.; Moorthi, R.N.; Gallant, K.M.H. Effects of Excessive Dietary Phosphorus Intake on Bone Health. Curr. Osteoporos. Rep. 2017, 15, 473–482. [Google Scholar] [CrossRef]
- Lee, A.W.; Cho, S.S. Association between phosphorus intake and bone health in the NHANES population. Nutr. J. 2015, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, P.; Alyemeni, M.N.; Wijaya, L.; Alam, P.; Ashraf, M. Mitigation of sodium chloride toxicity in Solanum lycopersicum L. By supplementation of jasmonic acid and nitric oxide. J. Plant Interact. 2018, 13, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Dötsch, M.; Busch, J.; Batenburg, M.; Liem, G.; Tareilus, E.; Mueller, R.; Meijer, G. Strategies to Reduce Sodium Consumption: A Food Industry Perspective. Crit. Rev. Food Sci. Nutr. 2009, 49, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.d.C.; Lima, R.P.A.; de Lima, R.T.; da Conceição Rodrigues Gonçalves, M.; de Morais, L.C.S.L.; Franceschini, S.C.C.; Filizola, R.G.; de Moraes, R.M.; de Carvalho Costa, M.J. Association between obesity and calcium:Phosphorus ratio in the habitual diets of adults in a city of northeastern brazil: An epidemiological study. Nutr. J. 2013, 12, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO/WHO. Food Labelling. Available online: http://www.fao.org/documents/card/en/c/5eb2d33b-d2ad-505e-898a-6aeba60ec896/ (accessed on 11 June 2022).
- FAO. Chapter 3: Calculation of the energy content of foods-energy conversion factors. In Food And Nutrition Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary reference intakes: Vitamin a, vitamin k, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Severi, S.; Bedogni, G.; Manzieri, A.M.; Poli, M.; Battistini, N. Effects of cooking and storage methods on the micronutrient content of foods. Eur. J. Cancer Prev. 1997, 6, S21–S24. [Google Scholar] [CrossRef]
- Mwangi, M.N.; Oonincx, D.G.A.B.; Stouten, T.; Veenenbos, M.; Melse-Boonstra, A.; Dicke, M.; Van Loon, J.J.A. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. 2018, 31, 248–255. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Duntas, L.H.; Rayman, M.P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol. 2022, 50, 102236. [Google Scholar] [CrossRef]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L. Modern Nutrition in Health and Disease; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- European Food Safety Authority [EFSA]. The 2013 european union report on pesticide residues in food. EFSA J. 2015, 13, 4038. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Efsa panel on contaminants in the food chain-scientific opinion on lead in food. EFSA J. 2010, 8, 1570. [Google Scholar]
- vLex European Union. Commission Regulation (EU) No 1275/2013 of 6 December 2013 amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, cadmium, lead, nitrites, volatile mustard oil and harmful botanical impurities. Off. J. Eur. Union. 2013, 328, 86–92. [Google Scholar]
- Dallas, P.L.; Williams, C. Barium: Rationale for a new oral reference dose. J. Toxicol. Environ. Health Part B Crit. Rev. 2001, 4, 395–429. [Google Scholar]
- Kravchenko, J.; Darrah, T.H.; Miller, R.K.; Lyerly, H.K.; Vengosh, A. A review of the health impacts of barium from natural and anthropogenic exposure. Environ. Geochem. Heal. 2014, 36, 797–814. [Google Scholar] [CrossRef] [PubMed]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans—A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, N.S.; Nusbaum, R.E.; Alexander, G.V.; Ezmirlian, F.; Spain, P.; Rounds, D.E. The skeletal deposition of yttrium. J. Biol. Chem. 1952, 195, 837–841. [Google Scholar] [CrossRef]
- Kumar, S.; Trivedi, A. A review on role of nickel in the biological system. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 719–727. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavle, R.R.; Pritchard, E.T.M.; Carne, A.; Bekhit, A.E.-D.A.; Agyei, D. Fatty Acid Profile, Mineral Composition, and Health Implications of Consuming Dried Sago Grubs (Rhynchophorus ferrugineus). Appl. Sci. 2023, 13, 363. https://doi.org/10.3390/app13010363
Kavle RR, Pritchard ETM, Carne A, Bekhit AE-DA, Agyei D. Fatty Acid Profile, Mineral Composition, and Health Implications of Consuming Dried Sago Grubs (Rhynchophorus ferrugineus). Applied Sciences. 2023; 13(1):363. https://doi.org/10.3390/app13010363
Chicago/Turabian StyleKavle, Ruchita Rao, Ellenna Tamsin Maree Pritchard, Alan Carne, Alaa El-Din Ahmed Bekhit, and Dominic Agyei. 2023. "Fatty Acid Profile, Mineral Composition, and Health Implications of Consuming Dried Sago Grubs (Rhynchophorus ferrugineus)" Applied Sciences 13, no. 1: 363. https://doi.org/10.3390/app13010363
APA StyleKavle, R. R., Pritchard, E. T. M., Carne, A., Bekhit, A. E. -D. A., & Agyei, D. (2023). Fatty Acid Profile, Mineral Composition, and Health Implications of Consuming Dried Sago Grubs (Rhynchophorus ferrugineus). Applied Sciences, 13(1), 363. https://doi.org/10.3390/app13010363