Tomato Maturity Estimation Using Deep Neural Network
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Data Collection
3.2. Deep Neural Network Model
3.3. Model Training and Evaluation
4. Results and Discussion
4.1. Classification Performance
4.2. Maturity Estimation
Maturity Class | Hue Value | Estimated Maturity | p-Value |
---|---|---|---|
Green | 0.16 ± 0.088 (1) | 0.15 ± 0.087 | 0.41 |
Turning | 0.33 ± 0.075 | 0.38 ± 0.117 | 0.13 |
Pink | 0.69 ± 0.106 | 0.75 ± 0.036 | <0.01 |
Red | 0.92 ± 0.047 | 0.92 ± 0.123 | 0.89 |
4.3. Evaluation of the Estimation Speed
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, W.S.; Lee, D.H.; Kim, Y.J.; Kim, T.; Lee, W.S.; Choi, C.H. Stereo-vision-based crop height estimation for agricultural robots. Comput. Electron. Agric. 2021, 181, 105937. [Google Scholar] [CrossRef]
- Alexander, L.; Grierson, D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 53, 2039–2055. [Google Scholar] [CrossRef]
- Garcia, M.B.; Ambat, S.; Adao, R.T. Tomayto, tomahto: A machine learning approach for tomato ripening stage identification using pixel-based color image classification. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–6. [Google Scholar]
- Pen, H.; Han, H.; Shan, S.; Chen, X. Mean-variance loss for deep age estimation from a face. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; p. 18347679. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2323. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Girshick, Ross. Fast r-cnn. In Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448.
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer, Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. arXiv 2016, arXiv:1506.02640. [Google Scholar]
- Li, A.; Zhao, L.; Zuo, Z.; Wang, Z.; Chen, H.; Lu, D.; Xing, W. Diversified text-to-image generation via deep mutual information estimation. Comput. Vis. Image Underst. 2021, 211, 103259. [Google Scholar] [CrossRef]
- Dimitri, G.M.; Spasov, S.; Duggento, A.; Passamonti, L.; Lió, P.; Toschi, N. Multimodal and multicontrast image fusion via deep generative models. Inf. Fusion 2022, 88, 146–160. [Google Scholar] [CrossRef]
- Yang, R.; Singh, S.K.; Tavakkoli, M.; Amiri, N.; Yang, Y.; Karami, M.A.; Rai, R. CNN-LSTM deep learning architecture for computer vision-based modal frequency detection. Mech. Syst. Signal Process. 2020, 144, 106885. [Google Scholar] [CrossRef]
- Rong, J.; Dai, G.; Wang, P. A peduncle detection method of tomato for autonomous harvesting. Complex Intell. Syst. 2021, 28, 2955–2969. [Google Scholar] [CrossRef]
- Padilha, T.C.; Moreira, G.; Magalhaes, S.A.; Santos, F.N.; Cunha, M.; Oliveira, M. Tomato detection using deep learning for robotics application. In Proceedings of the 2021 EPIA Conference on Artificial Intelligence, Virtual Event, 3 September 2021; pp. 27–38. [Google Scholar]
- Li, H.; Zhu, Q.; Huang, M.; Guo, Y.; Qin, J. Pose estimation of sweet pepper through symmetry axis detection. Sensors 2018, 18, 3083. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Zhou, H.; Chen, C. Visual perception and modeling for autonomous apple harvesting. IEEE Access 2020, 8, 62151–62163. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Zou, X.; Lin, G.; Wang, H. Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots. IEEE Access 2020, 8, 117746–117758. [Google Scholar] [CrossRef]
- Zu, L.; Zhao, Y.; Liu, J.; Su, F.; Zhang, Y.; Liu, P. Detection and segmentation of mature green tomatoes based on mask R-CNN with automatic image acquisition approach. Sensors 2021, 21, 7824. [Google Scholar] [CrossRef]
- Afonso, M.; Fonteijn, H.; Fiorentin, F.S.; Lensink, D.; Mooijm, M.; Faber, N.; Polder, G.; Wegrens, R. Tomato fruit detection and counting in greenhouses using deep learning. Front. Plant Sci. 2020, 11, 571299. [Google Scholar] [CrossRef]
- Seo, D.; Cho, B.H.; Kim, K.C. Development of monitoring robot system for tomato fruits in hydroponic greenhouses. Agronomy 2021, 11, 2211. [Google Scholar] [CrossRef]
- Rupanagudi, S.R.; Ranjani, B.S.; Nagaraj, P.; Bhat, V.G. A cost effective tomato maturity grading system using image processing for farmers. In Proceedings of the 2014 International Conference on Contemporary Computing and Informatics (IC3I), Mysore, India, 27–29 November 2014; pp. 7–12. [Google Scholar]
- Jianqiao, L.; Yihan, W.; Yang, O.; Biao, H.; Bailin, L. Neighbor-based label distribution learning to model label ambiguity for aerial scene classification. Remote Sens. 2021, 13, 755. [Google Scholar]
- Geng, X. Label distribution learning. arXiv 2014, arXiv:1408.6027. [Google Scholar]
- Kim, W.S.; Lee, D.H.; Kim, T.; Kim, G.; Kim, H.; Sim, T.; Kim, Y.J. One-shot classification-based tilled soil region segmentation for boundary guidance in autonomous tillage. Comput. Electron. Agric. 2021, 189, 106371. [Google Scholar] [CrossRef]
- Kim, W.S.; Lee, D.H.; Kim, Y.J. Machine vision-based automatic disease symptom detection of onion downy mildew. Comput. Electron. Agric. 2020, 168, 105099. [Google Scholar] [CrossRef]
- Mutha, S.A.; Shah, A.M.; Ahmed, M.Z. Maturity detection of tomatoes using deep learning. SN Comput. Sci. 2021, 2, 441. [Google Scholar] [CrossRef]
- Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 27. [Google Scholar] [CrossRef] [Green Version]
- Hallett, S.H.; Jones, R.J.A. Compliation of an accumulated temperature databased for use in an environmental information system. Agric. For. Meteorol. 1993, 63, 21–34. [Google Scholar] [CrossRef]
Maturity Class | Accuracy | Recall | Precision | F1 Score |
---|---|---|---|---|
Green | 0.98 | 0.98 | 0.91 | 0.94 |
Turning | 0.98 | 0.77 | 0.94 | 0.85 |
Pink | 0.95 | 0.83 | 0.92 | 0.87 |
Red | 0.97 | 0.98 | 0.95 | 0.97 |
Average | 0.97 | 0.89 | 0.93 | 0.91 |
GPU | Number of CUDA Cores | Clock (MHz) | Processing Speed (s) |
---|---|---|---|
Titan-V | 5120 | 1200 | 0.004 ± 0.0003 (1) |
Volta | 384 | 854 | 0.018 ± 0.0028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Lee, D.-H.; Kim, K.-C.; Choi, T.; Yu, J.M. Tomato Maturity Estimation Using Deep Neural Network. Appl. Sci. 2023, 13, 412. https://doi.org/10.3390/app13010412
Kim T, Lee D-H, Kim K-C, Choi T, Yu JM. Tomato Maturity Estimation Using Deep Neural Network. Applied Sciences. 2023; 13(1):412. https://doi.org/10.3390/app13010412
Chicago/Turabian StyleKim, Taehyeong, Dae-Hyun Lee, Kyoung-Chul Kim, Taeyong Choi, and Jun Myoung Yu. 2023. "Tomato Maturity Estimation Using Deep Neural Network" Applied Sciences 13, no. 1: 412. https://doi.org/10.3390/app13010412
APA StyleKim, T., Lee, D. -H., Kim, K. -C., Choi, T., & Yu, J. M. (2023). Tomato Maturity Estimation Using Deep Neural Network. Applied Sciences, 13(1), 412. https://doi.org/10.3390/app13010412