Parcel Classification and Positioning of Intelligent Parcel Storage System Based on YOLOv5
Abstract
:1. Introduction
2. Related Work
2.1. Literature Review
2.2. Overall Design of the Parcel Storage System
2.2.1. Storage Entrance and Display Part
2.2.2. Control Part
2.2.3. Main Control Part
2.2.4. Backup Part
3. Methodology
3.1. Deep Learning-Based Object Detection
3.2. Parcel Object Detection Algorithm
4. Experiments
4.1. Settings
4.2. Performance Measurement
4.3. Data Acquisition
4.4. Experimental Results and Comparisons
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Louis, E. Courier Management System. Master’s Thesis, Riara University, Nairobi, Kenya, 2021. [Google Scholar]
- Wang, W.; Zhong, Y.C.; Ma, J.M. The status quo and future of smart parcel cabinets in the development of smart technology in my country’s logistics express industry. Mod. Bus 2018, 34, 20–21. [Google Scholar]
- Zhang, S.Z.; Lee, C.K.M. Flexible vehicle scheduling for urban last mile logistics: The emerging technology of shared reception box. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM 2016), Bali, Indonesia, 4–7 December 2016; pp. 1913–1917. [Google Scholar]
- Kolarovszki, P.; Vaculík, J. Intelligent storage system based on automatic identification. Transp. Telecommun. J. 2014, 15, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Muzhir, S.; Al-Ani, M. Packages tracking using RFID technology. Int. J. Bus. ICT 2015, 1, 12–20. [Google Scholar]
- Mohd, A.; Rashid, R.A.; Hamid, A.H.F.A.; Sarijari, M.A.; Rahim, M.R.A.; Sayuti, H.; Rashid, M.R.A. Development of android-based apps for courier service management. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 1027–1036. [Google Scholar] [CrossRef]
- Bushanam, V.N.; Reddy, C.H. An Efficient CNN a deep learning approach applied on the image matching context. Int. J. Eng. Technol. 2018, 7, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kwon, Y.; Kim, J.; Kim, Y. Image Classification of Parcel Boxes under the Underground Logistics System Using CNN MobileNet. Appl. Sci. 2022, 12, 3337. [Google Scholar] [CrossRef]
- Kim, M. Improvement of Recognition Performance through Refinement of Parcel Damage Classification Algorithm based on CNN. Ph.D. Thesis, University of Science & Technology, Daejeon, Korea, 2022. [Google Scholar]
- Chen, X. E-Commerce Logistics Inspection System Based on Artificial Intelligence Technology in the Context of Big Data. Secur. Commun. Netw. 2022, 2022, 3418466. [Google Scholar] [CrossRef]
- Yao, J.; Qi, J.; Zhang, J.; Shao, H.; Yang, J.; Li, X. A real-time detection algorithm for Kiwifruit defects based on YOLOv5. Electronics 2021, 10, 1711. [Google Scholar] [CrossRef]
- Ruan, J. Design and Implementation of Target Detection Algorithm Based on YOLO; Beijing University of Posts and Telecommunications: Beijing, China, 2019. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 79–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Jamtsho, Y.; Riyamongkol, P.; Waranusast, R. Real-time Bhutanese license plate localization using YOLO. ICT Express 2020, 6, 121–124. [Google Scholar] [CrossRef]
- Fan, S.; Liang, X.; Huang, W.; Zhang, V.J.; Pang, Q.; He, X.; Li, L.; Zhang, C. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Comput. Electron. Agric. 2022, 193, 106715. [Google Scholar] [CrossRef]
- Chen, S.; Yang, D.; Liu, J.; Tian, Q.; Zhou, F. Automatic weld type classification, tacked spot recognition and weld ROI determination for robotic welding based on modified YOLOv5. Robot. Comput.-Integr. Manuf. 2023, 81, 102490. [Google Scholar] [CrossRef]
- Song, Q.; Li, S.; Bai, Q.; Yang, J.; Zhang, X.; Li, Z.; Duan, Z. Object Detection Method for Grasping Robot Based on Improved YOLOv5. Micromachines 2021, 12, 1273. [Google Scholar] [CrossRef]
- Benjumea, A.; Teeti, I.; Cuzzolin, F.; Bradley, A. YOLO-Z: Improving small object detection in YOLOv5 for autonomous vehicles. arXiv 2021, arXiv:2112.11798. [Google Scholar]
- Dong, X.; Yan, S.; Duan, C. A lightweight vehicles detection network model based on YOLOv5. Eng. Appl. Artif. Intell. 2022, 113, 104914. [Google Scholar] [CrossRef]
- Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Liu, T. On layer normalization in the transformer architecture. In Proceedings of the International Conference on Machine Learning (PMLR 2020), Virtual, 18 July 2021; Volume 119, pp. 10524–10533. [Google Scholar]
- Zhou, F.; Zhao, H.; Nie, Z. Safety helmet detection based on YOLOv5. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), Shenyang, China, 22–24 January 2021; pp. 6–11. [Google Scholar]
- Yang, Y.; Zhang, L.; Du, M.; Bo, J.; Liu, H.; Ren, L.; Deen, M.J. A comparative analysis of eleven neural networks architectures for small datasets of lung images of COVID-19 patients toward improved clinical decisions. Comput. Biol. Med. 2021, 139, 104887. [Google Scholar] [CrossRef]
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 233–240. [Google Scholar]
- Nepal, U.; Eslamiat, H. Comparing YOLOv3, YOLOv4 and YOLOv5 for autonomous landing spot detection in faulty UAVs. Sensors 2011, 22, 464. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Guillén, L.A. Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 1: Literature review. Remote Sens. 2021, 13, 2450. [Google Scholar] [CrossRef]
Related Work | Research Classification | Method | Accuracy |
---|---|---|---|
[1] | Parcel tracking | GPS | - |
[5] | Parcel tracking | RFID | - |
[6] | Parcel tracking | Android 4.4.2 | - |
[7] | Parcel Classification | EfficientNet | 83% |
[8] | Parcel Classification | MobileNet, ResNet50, VGG16 | 84.6% |
[9] | Parcel Classification | Improved MobileNet-v2 | 86.75% |
Model | Size (pixels) | Test Dataset | mAP (0.5) | FPS | GPU |
---|---|---|---|---|---|
YOLOv1 | 448 × 448 | VOC2007 | 63.4 | 45 | Titan X |
YOLOv2 | 544 × 544 | MS COCO | 44.0 | 40 | Titan X |
YOLOv3 | 608 × 608 | MS COCO | 57.9 | 20 | Titan X |
YOLOv4 | 608 × 608 | MS COCO | 65.7 | 62 | Tesla V100 |
YOLOv5s | 640 × 640 | MS COCO | 56 | 140 | Tesla V100 |
YOLOv5m | 640 × 640 | MS COCO | 63.9 | Tesla V100 | |
YOLOv5l | 640 × 640 | MS COCO | 67.2 | Tesla V100 | |
YOLOv5x | 640 × 640 | MS COCO | 68.9 | Tesla V100 | |
YOLOv6s | 640 × 640 | MS COCO | 35.9 | 550–620 | Tesla V100 |
YOLOv6l | 640 × 640 | MS COCO | 52.5 | Tesla V100 |
Model | mAP (0.5) | mAP (0.5:0.95) | Parmas (M) | FLOPs@640 (B) |
---|---|---|---|---|
YOLOv5s | 56.0 | 37.2 | 56 | Tesla V100 |
YOLOv5m | 63.9 | 45.2 | 63.9 | Tesla V100 |
YOLOv5l | 67.2 | 48.8 | 67.2 | Tesla V100 |
YOLOv5x | 68.9 | 50.7 | 68.9 | Tesla V100 |
Model | Precision | Recall | mAP (0.5) | mAP (0.5:0.95) | F1 | Parameter |
---|---|---|---|---|---|---|
YOLOv5s | 0.952 | 0.865 | 0.946 | 0.773 | 0.906 | 7,012,822 |
YOLOv5m | 0.923 | 0.903 | 0.951 | 0.798 | 0.913 | 20,852,934 |
YOLOv5l | 0.966 | 0.899 | 0.955 | 0.801 | 0.932 | 46,108,278 |
YOLOv5x | 0.945 | 0.910 | 0.958 | 0.815 | 0.928 | 84,173,414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kim, Y. Parcel Classification and Positioning of Intelligent Parcel Storage System Based on YOLOv5. Appl. Sci. 2023, 13, 437. https://doi.org/10.3390/app13010437
Kim M, Kim Y. Parcel Classification and Positioning of Intelligent Parcel Storage System Based on YOLOv5. Applied Sciences. 2023; 13(1):437. https://doi.org/10.3390/app13010437
Chicago/Turabian StyleKim, Mirye, and Youngmin Kim. 2023. "Parcel Classification and Positioning of Intelligent Parcel Storage System Based on YOLOv5" Applied Sciences 13, no. 1: 437. https://doi.org/10.3390/app13010437
APA StyleKim, M., & Kim, Y. (2023). Parcel Classification and Positioning of Intelligent Parcel Storage System Based on YOLOv5. Applied Sciences, 13(1), 437. https://doi.org/10.3390/app13010437