Development of Ultrasonic Pulsed Plasma Jet Source for Remote Surface Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concept and Construction of the Ultrasonic Pulsed Plasma Jet Source
2.2. Observation of Ultrasonic Pulsed Plasma Jet
2.3. Measurement of Electrical Characteristics
2.4. Dependence of Hydrophilic Effect on Plasma Gas Species
3. Results and Discussion
3.1. Observation of Plasma Stretching by Ultrasonic Pulsed Plasma
3.2. Measurement of Plasma Gas Flow Rate by the Schlieren Technique
3.3. Extension of Ultrasonic Pulsed Plasma Jet
3.4. Evaluation of Hydrophilic Effect Dependence on Plasma Gas Type
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Takemura, Y.; Kubota, Y.; Yamaguchi, N.; Hara, T. Development of atmospheric plasma jet with long flame. IEEE Trans. Plasma Sci. 2009, 37, 1604–1606. [Google Scholar] [CrossRef]
- Yanagawa, Y.; Kawano, H.; Kobayashi, T.; Miyahara, H.; Okino, A.; Mitsuhara, I. Direct protein introduction into plant cells using a multi-gas plasma jet. PLoS ONE 2017, 12, e0171942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurosawa, M.; Takamatsu, T.; Kawano, H.; Hayashi, Y.; Miyahara, H.; Ota, S.; Okino, A.; Yoshida, M. Endoscopic Hemostasis in Porcine Gastrointestinal Tract Using CO2 Low-Temperature Plasma Jet. J. Surg. Res. 2019, 234, 334–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, Y.; Takamatsu, T.; Kawano, H.; Miyahara, H.; Okino, A.; Yoshida, M.; Azuma, T. Investigation of blood coagulation effect of nonthermal multigas plasma jet in vitro and in vivo. J. Surg. Res. 2017, 219, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, K.; Koellensperger, G.; Rampler, E.; Traub, H.; Rottmann, L.; Panne, U.; Okino, A.; Jakubowski, N. Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements. J. Anal. At. Spectrom. 2013, 28, 637. [Google Scholar] [CrossRef]
- Shigeta, K.; Traub, H.; Panne, U.; Okino, A.; Rottmann, L.; Jakubowski, N. Application of a micro-droplet generator for an ICP-sector field mass spectrometer—Optimization and analytical characterization. J. Anal. At. Spectrom. 2013, 28, 646. [Google Scholar] [CrossRef]
- Iwai, T.; Takahashi, Y.; Miyahara, H.; Okino, A. Development of the atmospheric plasma soft-ablation method (APSA) for elemental analysis of materials on heat-sensitive substrates. Anal. Sci. 2013, 29, 1141–1145. [Google Scholar] [CrossRef] [Green Version]
- Miyahara, H.; Iwai, T.; Nagata, Y.; Takahashi, Y.; Fujita, O.; Toyoura, Y.; Okino, A. Development and fundamental investigation of He plasma ionization detector (HPID) for gas chromatography using DC glow discharge. J. Anal. At. Spectrom. 2014, 29, 105–110. [Google Scholar] [CrossRef]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Kalghatgi, S.U.; Fridman, G.; Cooper, M.; Nagaraj, G.; Peddinghaus, M.; Balasubramanian, M.; Vasilets, V.N.; Gutsol, A.F.; Fridman, A.; Friedman, G. Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma. IEEE Trans. Plasma Sci. 2007, 35, 1559–1566. [Google Scholar] [CrossRef]
- Fridman, G.; Peddinghaus, M.; Balasubramanian, M.; Ayan, H.; Fridman, A.; Gutsol, A.; Brooks, A. Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air. Plasma Chem. Plasma Process. 2006, 26, 425–442. [Google Scholar] [CrossRef]
- Iseki, S.; Nakamura, K.; Hayashi, M.; Tanaka, H.; Kondo, H.; Kajiyama, H.; Kano, H.; Kikkawa, F.; Hori, M. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2012, 100, 113702. [Google Scholar] [CrossRef]
- Vandamme, M.; Robert, E.; Lerondel, S.; Sarron, V.; Ries, D.; Dozias, S.; Sobilo, J.; Gosset, D.; Kieda, C.; Legrain, B.; et al. ROS implication in a new antitumor strategy based on non-thermal plasma. Int. J. Cancer. 2012, 130, 2185–2194. [Google Scholar] [CrossRef]
- Mizuno, A. Sterilization by oxygen radicals. J. Appl. Phys. 2003, 72, 457–461. [Google Scholar]
- Yanagisawa, Y.; Yoshioka, Y. Remote surface modification of plastics by atmospheric pressure barrier discharge. IEEJ Trans. A. 2007, 127, 303–308. [Google Scholar]
- Hasan, M.I.; Walsh, J.L. Influence of gas flow velocity on the transport of chemical species in an atmospheric pressure air plasma discharge. Appl. Phys. Lett. 2017, 110, 134102. [Google Scholar] [CrossRef] [Green Version]
- Miyahara, S.; Shibata, M.; Oshita, T.; Takamatsu, T.; Takamatsu, T.; Okino, A. Hydrophilic treatment of polyimide film by damage-free multi-gas plasma jet. Chem. Eng. J. 2013, 39, 372–377. [Google Scholar]
- Japanese Standards Association. JIS Handbook 33 Glass; Japanese Standards Association: Tokyo, Japan, 2007. [Google Scholar]
- Bradley, J.W.; Oh, J.; Olabanji, O.T.; Hale, C.; Mariani, R.; Kontis, K. Schlieren photography of the outflow from a plasma jet. IEEE Trans. Plasma Sci. 2011, 39, 2312–2313. [Google Scholar] [CrossRef]
- Boselli, M.; Colombo, V.; Gherardi, M.; Laurita, R.; Liguori, A.; Sanibondi, P.; Simoncelli, E.; Stancampiano, A. Characterization of a cold atmospheric pressure plasma jet device driven by nanosecond voltage pulses. IEEE Trans. Plasma Sci. 2015, 43, 713–725. [Google Scholar] [CrossRef]
- Matsuno, T.; Honami, S.; Fujii, K.; Sekimoto, S.; Iida, A. Fluid measurement methods. J. Plasma Fusion Res. 2015, 91, 661–664. [Google Scholar]
- Matsuno, T.; Maeda, K.; Fujita, N.; Haruna, K.; Yamada, G.; Kawazoe, H. On the mechanism of bluff body flow control by pulsed plasma actuator. J. Fluid Sci. Technol. 2014, 9, JFST0048. [Google Scholar] [CrossRef] [Green Version]
- Katoh Koken Corporation, Home Page. 2016. Available online: http://www.kk-co.jp/visible/schlieren.php (accessed on 20 November 2022).
- Ikui, T.; Matsuo, K. Mechanics of Compressible Fluids; Rikogaku-Sha: Tokyo, Japan, 1985. [Google Scholar]
- Sakaki, K.; Shimizu, Y.; Goda, Y. Effect of expansion state of combustion gas jet on high speed flame spray process. J. Jpn. Inst. Met. 1999, 63, 269–276. [Google Scholar] [CrossRef] [PubMed]
Plasma Gas Type | Mach Number | Sound Velocity [m/s] (25 °C) | Gas Velocity [m/s] |
---|---|---|---|
Ar | 1.6 | 322 | 501 |
N2 | 1.7 | 352 | 585 |
CO2 | 1.7 | 271 | 452 |
Air | 1.7 | 347 | 575 |
He | >1 | 1014 | >1014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohta, T.; Ogasawara, D.; Iwai, T.; Miyahara, H.; Okino, A. Development of Ultrasonic Pulsed Plasma Jet Source for Remote Surface Treatment. Appl. Sci. 2023, 13, 444. https://doi.org/10.3390/app13010444
Ohta T, Ogasawara D, Iwai T, Miyahara H, Okino A. Development of Ultrasonic Pulsed Plasma Jet Source for Remote Surface Treatment. Applied Sciences. 2023; 13(1):444. https://doi.org/10.3390/app13010444
Chicago/Turabian StyleOhta, Takashi, Daisuke Ogasawara, Takahiro Iwai, Hidekazu Miyahara, and Akitoshi Okino. 2023. "Development of Ultrasonic Pulsed Plasma Jet Source for Remote Surface Treatment" Applied Sciences 13, no. 1: 444. https://doi.org/10.3390/app13010444
APA StyleOhta, T., Ogasawara, D., Iwai, T., Miyahara, H., & Okino, A. (2023). Development of Ultrasonic Pulsed Plasma Jet Source for Remote Surface Treatment. Applied Sciences, 13(1), 444. https://doi.org/10.3390/app13010444