The Effects of Different Training Interventions on Soccer Players’ Sprints and Changes of Direction: A Network Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Study Selection
2.5. Data Extraction
2.6. Risk of Bias of Individual Studies
2.7. Data Analysis
3. Results
3.1. Study Identification and Selection
3.2. Characteristics of the Included Studies
3.3. Quality Assessment of the Included Studies
3.4. Network Meta-Analysis
3.4.1. Results for 10 m Sprint
3.4.2. Results for 20 m Sprint
3.4.3. COD
3.5. Publication Bias Test
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spiotta, A.M.; Bartsch, A.J.; Benzel, E.C. Heading in soccer: Dangerous play? Neurosurgery 2012, 70, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.S.; Osbahr, D.C. Knee Injuries in Elite Level Soccer Players. Am. J. Orthop. 2018, 47, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Arnason, A.; Sigurdsson, S.B.; Gudmundsson, A.; Holme, I.; Engebretsen, L.; Bahr, R. Physical fitness, injuries, and team performance in soccer. Med. Sci. Sports Exerc. 2004, 36, 278–285. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Haugen, T.; Tønnessen, E.; Hisdal, J.; Seiler, S. The role and development of sprinting speed in soccer. Int. J. Sports Physiol. Perform. 2014, 9, 432–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castagna, C.; D’Ottavio, S.; Abt, G. Activity profile of young soccer players during actual match play. J. Strength Cond. Res. 2003, 17, 775–780. [Google Scholar] [CrossRef]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Wright, M.D.; Atkinson, G. Changes in Sprint-Related Outcomes During a Period of Systematic Training in a Girls’ Soccer Academy. J. Strength Cond. Res. 2019, 33, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Čović, N.; Jelešković, E.; Alić, H.; Rađo, I.; Kafedžić, E.; Sporiš, G.; McMaster, D.T.; Milanović, Z. Reliability, Validity and Usefulness of 30-15 Intermittent Fitness Test in Female Soccer Players. Front. Physiol. 2016, 7, 510. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milanović, Z.; Sporiš, G.; Trajković, N.; Sekulić, D.; James, N.; Vučković, G. Does SAQ training improve the speed and flexibility of young soccer players? A randomized controlled trial. Hum. Mov. Sci. 2014, 38, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Coratella, G.; Dello Iacono, A.; Beato, M. Comparative effects of single vs. double weekly plyometric training sessions on jump, sprint and change of directions abilities of elite youth football players. J. Sports Med. Phys. Fit. 2019, 59, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Torres Martín, L.; Raya-González, J.; Ramirez-Campillo, R.; Chaabene, H.; Sánchez-Sánchez, J. Effects of body mass-based resistance training on measures of physical fitness and musculotendinous injury incidence and burden in U16 male soccer players. Res. Sports Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.; Edmundson, C.J.; Metcalfe, J.; Bottoms, L.; Atkins, S.; Bentley, I. The Effects of Sprint vs. Resisted Sled-Based Training; an 8-Week in-Season Randomized Control Intervention in Elite Rugby League Players. Int. J. Environ. Res. Public Health 2021, 18, 9241. [Google Scholar] [CrossRef]
- Ronnestad, B.R.; Kvamme, N.H.; Sunde, A.; Raastad, T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J. Strength Cond. Res. 2008, 22, 773–780. [Google Scholar] [CrossRef]
- Nuñez, J.; Suarez-Arrones, L.; de Hoyo, M.; Loturco, I. Strength Training in Professional Soccer: Effects on Short-sprint and Jump Performance. Int. J. Sports Med. 2022, 43, 485–495. [Google Scholar] [CrossRef]
- van de Hoef, P.A.; Brauers, J.J.; van Smeden, M.; Backx, F.J.G.; Brink, M.S. The Effects of Lower-Extremity Plyometric Training on Soccer-Specific Outcomes in Adult Male Soccer Players: A Systematic Review and Meta-Analysis. Int. J. Sports Physiol. Perform. 2019. [Google Scholar] [CrossRef]
- Sáez de Villarreal, E.; Requena, B.; Cronin, J.B. The effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Castillo, D.; Raya-González, J.; Moran, J.; de Villarreal, E.S.; Lloyd, R.S. Effects of Plyometric Jump Training on Jump and Sprint Performance in Young Male Soccer Players: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 2125–2143. [Google Scholar] [CrossRef]
- Pardos-Mainer, E.; Lozano, D.; Torrontegui-Duarte, M.; Cartón-Llorente, A.; Roso-Moliner, A. Effects of Strength vs. Plyometric Training Programs on Vertical Jumping, Linear Sprint and Change of Direction Speed Performance in Female Soccer Players: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 401–420. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Galván, L.M.; Casado, A.; García-Ramos, A.; Haff, G.G. Effects of Vest and Sled Resisted Sprint Training on Sprint Performance in Young Soccer Players: A Systematic Review and Meta-analysis. J. Strength Cond. Res. 2022, 36, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.J.; Oliver, J.L.; Pedley, J.S.; Haff, G.G.; Lloyd, R.S. Comparison of Weightlifting, Traditional Resistance Training and Plyometrics on Strength, Power and Speed: A Systematic Review with Meta-Analysis. Sports Med. 2022, 52, 1533–1554. [Google Scholar] [CrossRef] [PubMed]
- Plisk, S. Speed, agility, and speed-endurance development. Essent. Strength Train. Cond. 2000, 4, 471–491. [Google Scholar]
- Rouse, B.; Chaimani, A.; Li, T. Network meta-analysis: An introduction for clinicians. Intern. Emerg. Med. 2017, 12, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, P. Effects of Aquatic Exercise and Land-Based Exercise on Cardiorespiratory Fitness, Motor Function, Balance, and Functional Independence in Stroke Patients-A Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Jackson, D.; Riley, R.; White, I.R. Multivariate meta-analysis: Potential and promise. Stat. Med. 2011, 30, 2481–2498. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Salanti, G.; Ades, A.E.; Ioannidis, J.P. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: An overview and tutorial. J. Clin. Epidemiol. 2011, 64, 163–171. [Google Scholar] [CrossRef]
- Shim, S.; Yoon, B.H.; Shin, I.S.; Bae, J.M. Network meta-analysis: Application and practice using Stata. Epidemiol. Health 2017, 39, e2017047. [Google Scholar] [CrossRef] [PubMed]
- Khera, R.; Murad, M.H.; Chandar, A.K.; Dulai, P.S.; Wang, Z.; Prokop, L.J.; Loomba, R.; Camilleri, M.; Singh, S. Association of Pharmacological Treatments for Obesity With Weight Loss and Adverse Events: A Systematic Review and Meta-analysis. Jama 2016, 315, 2424–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faude, O.; Roth, R.; Di Giovine, D.; Zahner, L.; Donath, L. Combined strength and power training in high-level amateur football during the competitive season: A randomised-controlled trial. J. Sports Sci. 2013, 31, 1460–1467. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Torres-Torrelo, J.; Franco-Márquez, F.; González-Suárez, J.M.; González-Badillo, J.J. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players. J. Sci. Med. Sport 2017, 20, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Heitmann, K.A.; Sagelv, E.H.; Johansen, D.; Pettersen, S.A. Improved maximal strength is not associated with improvements in sprint time or jump height in high-level female football players: A clusterrendomized controlled trial. BMC Sports Sci. Med. Rehabil. 2019, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Maldonado, T.; Piazzi, A.F.; Bottino, A.; Kitamura, K.; Cal Abad, C.C.; de Arruda, M.; Nakamura, F.Y. Improving Sprint Performance in Soccer: Effectiveness of Jump Squat and Olympic Push Press Exercises. PLoS ONE 2016, 11, e0153958. [Google Scholar] [CrossRef]
- Ribeiro, J.; Teixeira, L.; Lemos, R.; Teixeira, A.S.; Moreira, V.; Silva, P.; Nakamura, F.Y. Effects of Plyometric Versus Optimum Power Load Training on Components of Physical Fitness in Young Male Soccer Players. Int. J. Sports Physiol. Perform. 2020, 15, 222–230. [Google Scholar] [CrossRef]
- Spineti, J.; Figueiredo, T.; Willardson, J.; Bastos de Oliveira, V.; Assis, M.; Fernandes de Oliveira, L.; Miranda, H.; Machado de Ribeiro Reis, V.M.; Simão, R. Comparison between traditional strength training and complex contrast training on soccer players. J. Sports Med. Phys. Fit. 2019, 59, 42–49. [Google Scholar] [CrossRef]
- Ozbar, N.; Ates, S.; Agopyan, A. The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players. J. Strength Cond. Res. 2014, 28, 2888–2894. [Google Scholar] [CrossRef]
- Shalfawi, S.A.; Haugen, T.; Jakobsen, T.A.; Enoksen, E.; Tønnessen, E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. J. Strength Cond. Res. 2013, 27, 2966–2972. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Jooyoung, K. Effect of FIFA 11+ Training Program on Soccer-Specific Physical Performance and Functional Movement in Collegiate Male Soccer Players: A Randomized Controlled Trial. Exerc. Sci. 2019, 28, 141–149. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Vergara-Pedreros, M.; Henríquez-Olguín, C.; Martínez-Salazar, C.; Alvarez, C.; Nakamura, F.Y.; De La Fuente, C.I.; Caniuqueo, A.; Alonso-Martinez, A.M.; Izquierdo, M. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players. J. Sports Sci. 2016, 34, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.C.; Schmid, C.H.; Lau, J.; Trikalinos, T.A. Meta-Analyst: Software for meta-analysis of binary, continuous and diagnostic data. BMC Med. Res. Methodol. 2009, 9, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taube, W.; Leukel, C.; Gollhofer, A. How neurons make us jump: The neural control of stretch-shortening cycle movements. Exerc. Sport Sci. Rev. 2012, 40, 106–115. [Google Scholar] [CrossRef]
- Komi, P.V.; Gollhofer, A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J. Appl. Biomech. 1997, 13, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Bobbert, M.F. Drop jumping as a training method for jumping ability. Sports Med. 1990, 9, 7–22. [Google Scholar] [CrossRef]
- Malisoux, L.; Francaux, M.; Nielens, H.; Theisen, D. Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl. Physiol. 2006, 100, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Reyes, P.; Garcia-Ramos, A.; Párraga-Montilla, J.A.; Morcillo-Losa, J.A.; Cuadrado-Peñafiel, V.; Castaño-Zambudio, A.; Samozino, P.; Morin, J.B. Seasonal Changes in the Sprint Acceleration Force-Velocity Profile of Elite Male Soccer Players. J. Strength Cond. Res. 2022, 36, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping. Front. Physiol. 2016, 7, 677. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; Morin, J.B. Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PLoS ONE 2019, 14, e0216681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mero, A.; Komi, P.V.; Gregor, R.J. Biomechanics of sprint running. A review. Sports Med. 1992, 13, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Thomas, C.; Dos’Santos, T.; McMahon, J.J.; Graham-Smith, P. The Role of Eccentric Strength in 180° Turns in Female Soccer Players. Sports 2017, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Falch, H.N.; Rædergård, H.G.; van den Tillaar, R. Association of strength and plyometric exercises with change of direction performances. PLoS ONE 2020, 15, e0238580. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.O.D. Molecular adaptations to concurrent strength and endurance training. In Concurrent Aerobic and Strength Training; Springer: Berlin/Heidelberg, Germany, 2019; pp. 99–123. [Google Scholar]
- Brearley, S.; Bishop, C. Transfer of training: How specific should we be? Strength Cond. J. 2019, 41, 97–109. [Google Scholar] [CrossRef]
- Healy, R.; Kenny, I.C.; Harrison, A.J. Resistance Training Practices of Sprint Coaches. J. Strength Cond. Res. 2021, 35, 1939–1948. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Lockie, R.G.; Cronin, J.B.; Jalilvand, F. Effect of Different Sprint Training Methods on Sprint Performance over Various Distances: A Brief Review. J. Strength Cond. Res. 2016, 30, 1767–1785. [Google Scholar] [CrossRef]
- Nicholson, B.; Dinsdale, A.; Jones, B.; Till, K. Authors’ Reply to Wewege et al.: Comment on: “The training of short distance sprint performance in football code athletes: A systematic review and meta-analysis”. Sports Med. 2021, 51, 1333–1334. [Google Scholar] [CrossRef]
- Lockie, R.G.; Murphy, A.J.; Schultz, A.B.; Knight, T.J.; Janse de Jonge, X.A. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J. Strength Cond. Res. 2012, 26, 1539–1550. [Google Scholar] [CrossRef] [Green Version]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-analysis and the science of research synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Franco-Márquez, F.; Mora-Custodio, R.; González-Badillo, J.J. Effect of High-Speed Strength Training on Physical Performance in Young Soccer Players of Different Ages. J. Strength Cond. Res. 2017, 31, 2498–2508. [Google Scholar] [CrossRef] [PubMed]
- Hammami, A.; Gabbett, T.J.; Slimani, M.; Bouhlel, E. Does small-sided games training improve physical fitness and team-sport-specific skills? A systematic review and meta-analysis. J. Sports Med. Phys. Fit. 2018, 58, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.J.; Gabbett, T.J.; Nassis, G.P. Agility in Team Sports: Testing, Training and Factors Affecting Performance. Sports Med. 2016, 46, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Amani-Shalamzari, S.; Khoshghadam, E.; Donyaei, A.; Parnow, A.; Bayati, M.; Clemente, F.M. Generic vs. small-sided game training in futsal: Effects on aerobic capacity, anaerobic power and agility. Physiol. Behav. 2019, 204, 347–354. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
PubMed | #1 Athletes OR players OR player OR athlete; #2 training OR exercise; #3 soccer OR football; #4 speed OR sprint OR velocity OR agility OR performance OR change of direction OR COD; #5 randomized controlled trials (publication type) #6: #1 AND #2 AND #3 AND #4 AND #5 |
Cochrane | #1 Athletes OR players OR player OR athlete; #2 training OR exercise; #3 soccer OR football; #4 speed OR sprint OR velocity OR agility OR performance OR change of direction OR COD #5: AND #1–#4 |
Web of Science | #1 TS = (athletes OR players OR player OR athlete); #2 TS = (training OR exercise); #3 TS = (soccer OR football); #4 TS = (speed OR sprint OR velocity OR agility OR performance OR change of direction OR COD) #5: #1 AND #2 AND #3 AND #4 |
Study | Competitive Level | Type | No. of Subjects | Age (Years) | Exercise Type | Test | Duration, Frequency | Exercise Interventions | ||
---|---|---|---|---|---|---|---|---|---|---|
Total | M | F | ||||||||
Faude et al., 2013 [33] | Semi- professional | RCT | 8 | 8 | 0 | 23.1 ± 2.7 | P+T+S+A | 10 m, COD | 7 weeks 2 sessions/week 30 min/session | Unilateral 4 × 90% 1RM + single-leg hurdle, jump 5 × 4 sets, rest 4 min, bilateral 50–60% 1RM, squat, sprint, etc., rest 1–2 min |
8 | 8 | 0 | 22.6 ± 2.4 | C | ||||||
Rodríguez et al., 2017 [34] | Semi- professional | RCT | 10 | — | — | 24.5 ± 3.4 | P+T+S+A | 10 m, 20 m | 6 weeks 2 sessions/week | Squat 4–6 repetitions, I = 45–60% 1RM CMJ 3 sets × 5 reps, COD 3–5 × 10 s, sprint 3–4 × 20 m, rest, 3 min |
10 | — | — | C | |||||||
Pedersen et al., 2019 [35] | Semi- professional | RCT | 19 | 0 | 19 | 18 ± 3 | T | 10 m | 5 weeks 2 sessions/week | Free-barbell squats |
15 | 0 | 15 | 19 ± 2 | C | ||||||
Ronnestad et al., 2008 [16] | Professional | RCT | 8 | 8 | 0 | 23 ± 2 | P+T | 10 m | 7 weeks 2 sessions/week | Alternate-leg bound 2–4 × 8–10, double leg hurdle jump + single leg forward hop 2 × 5, etc. |
6 | 6 | 0 | 22 ± 2.5 | T | Half squat, hip flexion, etc. | |||||
Loturco et al., 2016 [36] | Professional | RCT | 9 | 9 | 0 | 18.4 ± 1.2 | P | 10 m, 20 m, COD | 6 weeks 2 sessions/week | 6 × 8–4, rest, 2 min, jump |
8 | 8 | 0 | T | 6 × 8–4, rest, 2 min, olympic push | ||||||
Ribeiro et al., 2020 [37] | Semi- professional | RCT | 8 | 8 | 0 | 18.6 ± 0.52 | P | 10 m, COD | 7 weeks 2 sessions/1–5 week 12 sessions 35–45 min/session | Multi-direction hops 1–3 × 8, single-leg forward 2–3 × 8–12, box jump, drop jump 2–3 × 10–12, etc., rest, 2 min. |
8 | 8 | 0 | 18.4 ± 0.52 | T | Olympic push, half squat. | |||||
Spineti et al., 2019 [38] | Semi- professional | RCT | 10 | 10 | 0 | 18.4 ± 0.4 | P+T+S+A | 10 m, 20 m, COD (93639) | 8 weeks 3 sessions/week 40 min/week | Plyometric hurdle hops, single-arm alternate-leg bound over barrier, diagonal jump over barrier, etc., 10 × 2, rest, 3 min. |
12 | 12 | 0 | T | Smith half-squats, stiff-legged barbell deadlift, etc., 2–4 × 4–15 reps | ||||||
Ozbar et al., 2014 [39] | Semi- professional | RCT | 9 | 0 | 9 | 18.3 ± 2.6 | P+S+A | 20 m | 8 weeks 1 session/week 60 min/session | Standing long jump, single-leg horizontal jump, side-to-side slide and hops, etc., 3–5 × 5–12, sprint, COD, etc. |
9 | 0 | 9 | 18.0 ± 2.0 | C | ||||||
Shalfawi et al., 2013 [40] | Semi- professional | RCT | 10 | 0 | 10 | 19.4 ± 4.4 | RS+A | 20 m | 10 weeks 1 session/week | 6–3–9–9–6 agility, with resistance running band, repeated sprint, 4–5 × 40 m, exercise rest, 90 s, sets, rest, 10 min. |
10 | 0 | 10 | T | Leg press, squat jump, leg extension, etc., 2–3 × 5–10 RM, rest, 2–3 min. | ||||||
Hwang & Jooyoung, 2019 [41] | Semi- professional | RCT | 10 | 10 | 0 | 20.0 ± 0.6 | P+T+S+A | COD | 12 weeks 5 sessions/week 20–25 min/session | 2 × 30 s squat, VJ, LJ, box jump, 2 × 30 s, agility running, etc. |
10 | 10 | 0 | 20.1 ± 0.8 | C | ||||||
Ramirez et al., 2016 [42] | Semi- professional | RCT | 19 | 0 | 19 | 22.4 ± 2.4 | P (female) | COD (Illinois) | 6 weeks 2 sessions/week 40 min/session | Jump, reverse jump, etc., 5 sets |
19 | 0 | 19 | 20.5 ± 2.5 | C (female) | ||||||
21 | 21 | 0 | 20.4 ± 2.8 | P (male) | COD (Illinois) | 6 weeks 2 sessions/week 40 min/session | Jump, reverse jump, etc., 5 sets | |||
21 | 21 | 0 | 20.8 ± 2.7 | C (male) |
Exercise | 10 m Sprint | 20 m Sprint | COD | ||||||
---|---|---|---|---|---|---|---|---|---|
SUCRA | P (%) | Mean Rank | SUCRA | P (%) | Mean Rank | SUCRA | P (%) | Mean Rank | |
1 | 13.7 | 0.7 | 3.6 | 9.1 | 0.0 | 4.6 | 17.6 | 0.6 | 3.5 |
2 | 48.5 | 11.1 | 2.5 | 48.8 | 8.2 | 3.0 | 41.3 | 17.4 | 2.8 |
3 | 67.5 | 42.8 | 2.0 | 54.0 | 23.2 | 2.8 | 66.0 | 28.1 | 2.0 |
4 | 70.2 | 45.5 | 1.9 | 68.3 | 23.2 | 2.3 | 75.0 | 53.9 | 1.7 |
5 | 69.8 | 45.4 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, K.; Jeong, G.; Chun, B. The Effects of Different Training Interventions on Soccer Players’ Sprints and Changes of Direction: A Network Meta-Analysis of Randomized Controlled Trials. Appl. Sci. 2023, 13, 446. https://doi.org/10.3390/app13010446
Dong K, Jeong G, Chun B. The Effects of Different Training Interventions on Soccer Players’ Sprints and Changes of Direction: A Network Meta-Analysis of Randomized Controlled Trials. Applied Sciences. 2023; 13(1):446. https://doi.org/10.3390/app13010446
Chicago/Turabian StyleDong, Kuan, Guyeol Jeong, and Buongo Chun. 2023. "The Effects of Different Training Interventions on Soccer Players’ Sprints and Changes of Direction: A Network Meta-Analysis of Randomized Controlled Trials" Applied Sciences 13, no. 1: 446. https://doi.org/10.3390/app13010446
APA StyleDong, K., Jeong, G., & Chun, B. (2023). The Effects of Different Training Interventions on Soccer Players’ Sprints and Changes of Direction: A Network Meta-Analysis of Randomized Controlled Trials. Applied Sciences, 13(1), 446. https://doi.org/10.3390/app13010446