The Pathology of the First Permanent Molar during the Mixed Dentition Stage—Review
Abstract
:1. Introduction
- The first stage corresponds to the first transition in which the FPMs erupt, the primary incisors exfoliate, and the permanent incisors erupt.
- When the permanent incisors have reached the plane of occlusion, the first transition ends, and we move to the second stage, called the intertransitional stage, in which intense remodeling of the alveolar process occurs simultaneously with the continuation of the development of the permanent teeth and with the resorption of the roots of the deciduous canines and molars. During the intertransitional period, the permanent incisors, primary canines, primary molars, and the FPMs cohabit in the oral cavity.
- The third stage corresponds to the second transition in which the deciduous molars and canines exfoliate, and their successors erupt (the permanent premolars and canines), whereupon the permanent second molars erupt.
- The eruption of the FPM is a unique morphological and functional event because it simultaneously establishes the distal limit of the canine and premolar segment and the mesial limit of the molar teeth [6]. It not only achieves the only stable posterior occlusal stops, but it contributes to accomplishing the consistency between the anterior determinant (the teeth) and the posterior determinant (the temporomandibular joint) of occlusion [7].
- Being the first permanent tooth that erupts, the FPM pushes the jaws apart, increasing the height of the lower third of the face [8].
- As an accessional tooth, during the transition between the primary and permanent dentition, the FPM shifts mesially, exploiting any anteriorly existing space, like the primate diastemata (spaces between primary teeth) and the leeway space of Nance, which is the result of the difference between the sum of the widths of the deciduous canine and molars and that of their successors, the permanent canine and premolars [3,4,11,12]. Closing of the primate diastemata is accomplished through the early mesial shift, while the leeway space of Nance is used through the late mesial shift [12]. As the leeway space of Nance is greater in the mandible than in the maxilla, through the late mesial shift, the mandibular FPM changes its sagittal position in relation to the maxillary FPM [12]. This is considered the last mechanism of permanent molar occlusion development [12].
- The formation and mineralization of the FPM take place during difficult periods of human development, namely at the time of birth and immediately after, until the age of three [7].
- During the transition period between primary and permanent dentition, it coexists with the deciduous teeth, which are mobile at the time of the physiological resorption of their roots and sometimes decayed, thus favoring dental plaque retention [7].
2. Materials and Methods
2.1. Data Collection
2.2. Eligibility Criteria
- published in a peer-reviewed scientific journal
- available in full-text
- related to children in the mixed dentition stage
- fit in the following type of study: cohort and cross-sectional studies, reviews (narrative or systematic), case reports, background information, and expert opinion.
- published in a language other than English
- conference proceedings
- editorials
- letters
2.3. Search Strategy
3. Results and Discussion
3.1. Eruption Pathology
3.1.1. Ectopic Eruption
Diagnosis
- grade I (mild)—resorption limited to cementum or with minimum dentin penetration
- grade II (moderate)—resorption of the dentin without pulp exposure
- grade III (severe)—resorption of the distal root resulting in pulp exposure
- grade IV (very severe)—resorption extended to the mesial root of the primary second molar.
Prevalence and Characteristics in Different Populations
Predictive Factors for Irreversible Outcome
Associated Anomalies
Clinical Management of FPM Ectopic Eruption
3.2. Pathology of the Dental Hard Tissues
3.2.1. Molar Incisor Hypomineralization
Etiology
MIH Diagnosis
- was introduced by the 6th Congress of the European Academy of Paediatric Dentistry (EAPD) in 2002 [70].
- eight years of age was considered as the appropriate time for any examination for the condition because, at this age, in most children, all four FPMs and the majority of the incisors will be erupted [70].
- absence or presence of demarcated opacities;
- posteruptive enamel breakdown;
- atypical restorations (extended to the palatal surface and buccal surfaces; an opacity is frequently present at the border of the restoration);
- extraction of molars due to MIH.
- Demarcated opacities in non-stress-bearing area of molar.
- Normal dental sensitivity
- Intact atypical restoration present
- Occlusal/incisal third of teeth without initial posteruptive enamel breakdown.
- Posteruptive enamel breakdown/caries limited to one or two surfaces without cuspal involvement.
- Normal dental sensitivity.
- Rapid posteruptive enamel breakdown on erupting tooth
- Often develop widespread caries associated with affected enamel
- History of dental sensitivity.
- Amelogenesis imperfecta, a hereditary abnormality characterized by quantitative and structural disturbances of the enamel, without structural modifications of the dentine; it affects all teeth in the permanent dentition [52].
The Burden of MIH
3.2.2. Dental Caries
FPM Vulnerability to Caries during the Mixed Dentition Stage
Epidemiology of FPM Caries in the Mixed Dentition Stage
Particularities of Approaching the Child with FPM Caries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ogodescu, A.; Luca, M.; Ogodescu, E.; Bălan, A.; Igna, A.; Savin, C.; Rusu, D.; Bârcă, A. Space Management in Primary and Mixed Dentition; Victor Babeş Publishing House: Timişoara, Romania, 2019; p. 18. [Google Scholar]
- American Academy of Pediatric Dentistry. Management of the developing dentition and occlusion in pediatric dentistry. In The Reference Manual of Pediatric Dentistry; American Academy of Pediatric Dentistry: Chicago, IL, USA, 2021; pp. 408–425. [Google Scholar]
- van der Linden, F.P.G.M. Development of the Human Dentition; Quintessence Publishing Co.: Hanover Park, IL, USA, 2013; pp. 55–123. [Google Scholar]
- Proffit, W.R. Early stages of development. In Contemporary Orthodontics, 5th ed.; Proffit, W.R., Fields, H.W., Sarver, D.M., Ackerman, J.L., Eds.; Elsevier Mosby: St. Louis, MO, USA, 2013; pp. 66–91. [Google Scholar]
- Brodie, A.G. The growth of alveolar bone and the eruption of the teeth. Oral Surg. Oral Med. Oral Pathol. 1948, 1, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Barnett, E.M.; Mehta, J.D. Oral growth stages--the keys to guiding occlusal development. J. Am. Dent. Assoc. 1970, 81, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Anistoroaie, D.; Matei, M.; Pacurar, M.; Buzatu, R.A.; Romanec, C. Interrelations between odonto-parodontal affects of the first permanent molar and their odontogenetic and morfostructural peculiarities. Rev. De Chim. 2018, 69, 3310–3314. [Google Scholar] [CrossRef]
- Schudy, F.F. The rotation of the mandible resulting from growth: Its implications in orthodontic treatment. Angle Orthod. 1965, 35, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Björk, A.; Skieller, V. Facial development and tooth eruption. An implant study at the age of puberty. Am. J. Orthod. 1972, 62, 339–383. [Google Scholar] [CrossRef]
- Brin, I.; Kelley, M.B.; Ackerman, J.L.; Green, P.A. Molar occlusion and mandibular rotation: A longitudinal study. Am. J. Orthod. 1982, 81, 397–403. [Google Scholar] [CrossRef]
- Nance, H.N. The limitations of orthodontic treatment; mixed dentition diagnosis and treatment. Am. J. Orthod. 1947, 33, 177–223. [Google Scholar] [CrossRef]
- Baume, L.J. Physiological tooth migration and its significance for the development of occlusion; the biogenesis of accessional dentition. J. Dent. Res. 1950, 29, 331–337. [Google Scholar] [CrossRef]
- Angle, E.H. Classification of malocclusion. Dent. Cosmos. 1899, 41, 248–264. [Google Scholar]
- Scheid, R.C.; Weiss, G. Morphology of permanent molars. In Woelfel’s Dental Anatomy, 8th ed.; Scheid, R.C., Weiss, G., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; pp. 120–163. [Google Scholar]
- Massler, M.; Schour, I. Studies in tooth development: Theories of eruption. Am. J. Orthod. Oral Surg. 1941, 27, 552–576. [Google Scholar] [CrossRef]
- Zou, J.; Meng, M.; Law, C.S.; Rao, Y.; Zhou, X. Common dental diseases in children and malocclusion. Int. J. Oral Sci. 2018, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Barberia-Leache, E.; Suarez-Clúa, M.C.; Saavedra-Ontiveros, D. Ectopic eruption of the maxillary first permanent molar: Characteristics and occurrence in growing children. Angle Orthod. 2005, 75, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Mucedero, M.; Rozzi, M.; Cardoni, G.; Ricchiuti, M.R.; Cozza, P. Dentoskeletal features in individuals with ectopic eruption of the permanent maxillary first molar. Korean J. Orthod. 2015, 45, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Bjerklin, K.; Kurol, J. Ectopic eruption of the maxillary first permanent molar: Etiologic factors. Am. J. Orthod. 1983, 84, 147–155. [Google Scholar] [CrossRef]
- Mooney, G.C.; Morgan, A.G.; Rodd, H.D.; North, S. Ectopic eruption of first permanent molars: Presenting features and associations. Eur. Arch. Paediatr. Dent. 2007, 8, 153–157. [Google Scholar] [CrossRef]
- Kennedy, D.B.; Turley, P.K. The clinical management of ectopically erupting first permanent molars. Am. J. Orthod. Dentofac. Orthop. 1987, 92, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Bjerklin, K.; Kurol, J.; Paulin, G. Ectopic eruption of the maxillary first permanent molars in children with cleft lip and/or palate. Eur. J. Orthod. 1993, 15, 535–540. [Google Scholar] [CrossRef]
- Kupietzky, A. Correction of ectopic eruption of permanent molars utilizing the brass wire technique. Pediatr. Dent. 2000, 22, 408–412. [Google Scholar]
- Chapman, H. First upper permanent molars partially impacted against second deciduous molars. Int. J. Orthod. Oral Surg. Radiogr. 1923, 9, 339–345. [Google Scholar] [CrossRef]
- Aldowsari, M.K.; Alsaidan, M.; Alaqil, M.; BinAjian, A.; Albeialy, J.; Alraawi, M.; Al Moaleem, M.M. Ectopic Eruption of First Permanent Molars for Pediatric Patients Attended King Saud University, Riyadh, Saudi Arabia: A Radiographic Study. Clin. Cosmet. Investig. Dent. 2021, 13, 325–333. [Google Scholar] [CrossRef]
- Dabbagh, B.; Sigal, M.J.; Tompson, B.D.; Titley, K.; Andrews, P. Ectopic Eruption of the Permanent Maxillary First Molar: Predictive Factors for Irreversible Outcome. Pediatr. Dent. 2017, 39, 215–218. [Google Scholar] [PubMed]
- Chintakanon, K.; Boonpinon, P. Ectopic eruption of the first permanent molars: Prevalence and etiologic factors. Angle Orthod. 1998, 68, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Mendoza, A.; Villalon-Rivero, G.; Caleza-Jimenez, C.; Solano-Mendoza, B.; Yañez-Vico, R.M.; Iglesias-Linares, A. Ectopic eruption of the permanent maxillary first molar: Study in a population of 505 South European children. Edorium J. Dent. 2014, 1, 7–11. [Google Scholar] [CrossRef]
- Güven, Y. Prevalence of ectopic eruption of first permanent molars in a Turkish population. Eur. Oral Res. 2018, 52, 1–5. [Google Scholar] [CrossRef]
- Hali, H.; Salehi, M.; Molania, T.; Farahbod, F.; Maghfouri, H. Prevalence of Ectopic Eruption of First Permanent Molars in Panoramic Images of 5–8-Year-Old Children in Sari, Mazandaran Province, North of Iran in 2013–2020. Int. J. Pediatr. 2021, 9, 13591–13597. [Google Scholar] [CrossRef]
- Chen, X.; Huo, Y.; Peng, Y.; Zhang, Q.; Zou, J. Ectopic eruption of the first permanent molar: Predictive factors for irreversible outcome. Am. J. Orthod. Dentofac. Orthop. 2021, 159, e169–e177. [Google Scholar] [CrossRef]
- Canut, J.A.; Raga, C. Morphological analysis of cases with ectopic eruption of the maxillary first permanent molar. Eur. J. Orthod. 1983, 5, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Bjerklin, K.; Kurol, J.; Valentin, J. Ectopic eruption of maxillary first permanent molars and association with other tooth and developmental disturbances. Eur. J. Orthod. 1992, 14, 369–375. [Google Scholar] [CrossRef]
- Becktor, K.B.; Steiniche, K.; Kjaer, I. Association between ectopic eruption of maxillary canines and first molars. Eur. J. Orthod. 2005, 27, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Salbach, A.; Schremmer, B.; Grabowski, R.; Stahl de Castrillon, F. Correlation between the frequency of eruption disorders for first permanent molars and the occurrence of malocclusions in early mixed dentition. J. Orofac. Orthop. 2012, 73, 298–306. [Google Scholar] [CrossRef]
- Helm, A.; Martín-Vacas, A.; Molinero-Mourelle, P.; Caleya, A.M.; Gallardo, N.E.; Mourelle-Martínez, M.R. Ectopic Eruption of Maxillary First Permanent Molars: Preliminary Results of Prevalence and Dentoskeletal Characteristics in Spanish Paediatric Population. Children 2021, 8, 479. [Google Scholar] [CrossRef] [PubMed]
- Fields, H.W.; Proffit, W.R. Management of Eruption Problems. In Contemporary Orthodontics, 5th ed.; Proffit, W.R., Fields, H.W., Sarver, D.M., Ackerman, J.L., Eds.; Elsevier Mosby: St. Louis, MO, USA, 2013; pp. 417–426. [Google Scholar]
- Gonçalves, R.A.; Vargas, I.A.; Ruschel, H.C. Clinical management of the ectopic eruption of a maxillary first permanent molar—Case report. Stomatos 2012, 18, 17–25. Available online: http://revodonto.bvsalud.org/pdf/sto/v18n35/a04v18n35.pdf (accessed on 15 September 2022).
- Rizzatto, S.M.; de Menezes, L.M.; do Rego, M.V.; Thiesen, G.; de Araujo, V.P.; Freitas, M.P. Maxillary first permanent molar impaction. A conservative treatment approach. J. Clin. Pediatr. Dent. 2005, 30, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Hovorakova, M.; Lesot, H.; Peterka, M.; Peterkova, R. Early development of the human dentition revisited. J. Anat. 2018, 233, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamunadevi, A.; Pratibha, R.; Rajmohan, M.; Mahendraperumal, S.; Ganapathy, N.; Srivandhana, R. First Molars in Permanent Dentition and their Malformations in Various Pathologies: A Review. J. Pharm. Bioallied Sci. 2021, 13, S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Jälevik, B.; Norén, J.G. Enamel hypomineralization of permanent first molars: A morphological study and survey of possible aetiological factors. Int. J. Paediatr. Dent. 2000, 10, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Weerheijm, K.; Jälevik, B.; Alaluusua, S. Molar-incisor hypomineralisation. Caries Res. 2001, 35, 390–391. [Google Scholar] [CrossRef]
- Weerheijm, K.L. Molar incisor hypomineralisation (MIH). Eur. J. Paediatr. Dent. 2003, 4, 114–120. [Google Scholar]
- Weerheijm, K.L. Molar incisor hypomineralization (MIH): Clinical presentation, aetiology and management. Dent. Update 2004, 31, 9–12. [Google Scholar] [CrossRef]
- Matalová, E.; Lungová, V.; Sharpe, P. Development of Tooth and Associated Structures. In Stem Cell Biology and Tissue Engineering in Dental Sciences; Vishwakarma, A., Sharpe, P., Songtao, S., Ramalingam, M., Eds.; Academic Press: Amsterdam, The Netherlands, 2015; pp. 335–346. [Google Scholar]
- Suga, S. Enamel hypomineralization viewed from the pattern of progressive mineralization of human and monkey developing enamel. Adv. Dent. Res. 1989, 3, 188–198. [Google Scholar] [CrossRef]
- Smith, C.E. Cellular and chemical events during enamel maturation. Crit. Rev. Oral Biol. Med. 1998, 9, 128–161. [Google Scholar] [CrossRef] [PubMed]
- Sönmez, H.; Yıldırım, G.; Bezgin, T. Putative factors associated with molar incisor hypomineralisation: An epidemiological study. Eur. Arch. Paediatr. Dent. 2013, 14, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Crombie, F.; Manton, D.; Kilpatrick, N. Aetiology of molar-incisor hypomineralization: A critical review. Int. J. Paediatr. Dent. 2009, 9, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Alaluusua, S. Aetiology of Molar-Incisor Hypomineralisation: A systematic review. Eur. Arch. Paediatr. Dent. 2010, 11, 53–58. [Google Scholar] [CrossRef]
- Mast, P.; Rodrigueztapia, M.T.; Daeniker, L.; Krejci, I. Understanding MIH: Definition, epidemiology, differential diagnosis and new treatment guidelines. Eur. J. Paediatr. Dent. 2013, 14, 204–208. [Google Scholar]
- Padavala, S.; Sukumaran, G. Molar Incisor Hypomineralization and Its Prevalence. Contemp. Clin. Dent. 2018, 9, S246–S250. [Google Scholar] [CrossRef]
- Lygidakis, N.A.; Dimou, G.; Marinou, D. Molar-incisor-hypomineralisation (MIH). A retrospective clinical study in Greek children. II. Possible medical aetiological factors. Eur. Arch. Paediatr. Dent. 2008, 9, 207–217. [Google Scholar] [CrossRef]
- Bagattoni, S.; Carli, E.; Gatto, M.R.; Gasperoni, I.; Piana, G.; Lardani, L. Predisposing factors involved in the aetiology of Molar Incisor Hypomineralization: A case-control study. Eur. J. Paediatr. Dent. 2022, 23, 116–120. [Google Scholar] [CrossRef]
- Thakur, H.; Kaur, A.; Singh, N.; Singh, R.; Kumar, S. Prevalence and Clinical Characteristics of Molar-Incisor Hypomineralization in 8–16-year-old Children in Industrial Town of Solan District of Himachal Pradesh. Int. J. Clin. Pediatr. Dent. 2020, 13, 230–234. [Google Scholar] [CrossRef]
- Alaluusua, S.; Lukinmaa, P.L.; Vartiainen, T.; Partanen, M.; Torppa, J.; Tuomisto, J. Polychlorinated dibenzo-p-dioxins and dibenzofurans via mother’s milk may cause developmental defects in the child’s teeth. Environ. Toxicol. Pharmacol. 1996, 1, 193–197. [Google Scholar] [CrossRef]
- Alaluusua, S.; Lukinmaa, P.L.; Koskimies, M.; Pirinen, S.; Hölttä, P.; Kallio, M.; Holttinen, T.; Salmenperä, L. Developmental dental defects associated with long breast feeding. Eur. J. Oral Sci. 1996, 104, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Jan, J.; Sovcikova, E.; Kocan, A.; Wsolova, L.; Trnovec, T. Developmental dental defects in children exposed to PCBs in eastern Slovakia. Chemosphere 2007, 67, S350–S354. [Google Scholar] [CrossRef] [PubMed]
- Laisi, S.; Kiviranta, H.; Lukinmaa, P.L.; Vartiainen, T.; Alaluusua, S. Molar-incisor-hypomineralisation and dioxins: New findings. Eur. Arch. Paediatr. Dent. 2008, 9, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, R.; Ramazani, N.; Nourinasab, R. Molar incisor hypomineralization: A study of prevalence and etiology in a group of Iranian children. Iran J. Pediatr. 2012, 22, 245–251. [Google Scholar] [PubMed]
- Allazzam, S.M.; Alaki, S.M.; El Meligy, O.A. Molar incisor hypomineralization, prevalence, and etiology. Int. J. Dent. 2014, 2014, 234508. [Google Scholar] [CrossRef] [PubMed]
- Ilczuk-Rypuła, D.; Zalewska, M.; Pietraszewska, D.; Dybek, A.; Nitecka-Buchta, A.; Postek-Stefańska, L. Prevalence and Possible Etiological Factors of Molar-Incisor Hypomineralization (MIH) in Population of Silesian Children in Poland: A Pilot Retrospective Cohort Study. Int. J. Environ. Res. Public Health 2022, 19, 8697. [Google Scholar] [CrossRef]
- Fatturi, A.L.; Wambier, L.M.; Chibinski, A.C.; Assunção, L.R.D.S.; Brancher, J.A.; Reis, A.; Souza, J.F. A systematic review and meta-analysis of systemic exposure associated with molar incisor hypomineralization. Community Dent. Oral Epidemiol. 2019, 47, 407–415. [Google Scholar] [CrossRef]
- Garot, E.; Rouas, P.; Somani, C.; Taylor, G.D.; Wong, F.; Lygidakis, N.A. An update of the aetiological factors involved in molar incisor hypomineralisation (MIH): A systematic review and meta-analysis. Eur. Arch. Paediatr. Dent. 2022, 23, 23–38. [Google Scholar] [CrossRef]
- Elhennawy, K.; Schwendicke, F. Managing molar-incisor hypomineralization: A systematic review. J. Dent. 2016, 55, 16–24. [Google Scholar] [CrossRef]
- Farah, R.A.; Monk, B.C.; Swain, M.V.; Drummond, B.K. Protein content of molar-incisor hypomineralisation enamel. J. Dent. 2010, 38, 591–596. [Google Scholar] [CrossRef]
- Farah, R.A.; Swain, M.V.; Drummond, B.K.; Cook, R.; Atieh, M. Mineral density of hypomineralised enamel. J. Dent. 2010, 38, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Jälevik, B.; Klingberg, G.A. Dental treatment, dental fear and behaviour management problems in children with severe enamel hypomineralization of their permanent first molars. Int. J. Paediatr. Dent. 2002, 12, 24–32. [Google Scholar] [PubMed]
- Weerheijm, K.L.; Duggal, M.; Mejàre, I.; Papagiannoulis, L.; Koch, G.; Martens, L.C.; Hallonsten, A.L. Judgement criteria for molar incisor hypomineralisation (MIH) in epidemiologic studies: A summary of the European meeting on MIH held in Athens, 2003. Eur. J. Paediatr. Dent. 2003, 4, 110–113. [Google Scholar] [PubMed]
- Wright, J.T. Diagnosis and treatment of molar-incisor hypomineralization. In Handbook of Clinical Techniques in Pediatric Dentistry; Soxman, J.A., Ed.; John Wiley & Sons, Inc.: Ames, IA, USA, 2015; pp. 99–106. [Google Scholar]
- Biondi, A.M.; Córtese, S.G.; Babino, L.; Toscano, M.A. Molar incisor hypomineralization: Analysis of asymmetry of lesions. Acta Odontol. Latinoam. 2019, 32, 44–48. [Google Scholar]
- Martínez Gómez, T.P.; Guinot Jimeno, F.; Bellet Dalmau, L.J.; Giner Tarrida, L. Prevalence of molar-incisor hypomineralisation observed using transillumination in a group of children from Barcelona (Spain). Int. J. Paediatr. Dent. 2012, 22, 100–109. [Google Scholar] [CrossRef]
- Ghanim, A.; Bagheri, R.; Golkari, A.; Manton, D. Molar-incisor hypomineralisation: A prevalence study amongst primary schoolchildren of Shiraz, Iran. Eur. Arch. Paediatr. Dent. 2014, 15, 75–82. [Google Scholar] [CrossRef]
- Koruyucu, M.; Özel, S.; Tuna, E.B. Prevalence and etiology of molar-incisor hypomineralization (MIH) in the city of Istanbul. J. Dent. Sci. 2018, 13, 318–328. [Google Scholar] [CrossRef]
- Hernández, M.; Boj, J.R.; Espasa, E.; Peretz, B. First Permanent Molars and Permanent Incisors Teeth by Tooth Prevalence of Molar-Incisor-Hypomineralisation in a Group of Spanish Schoolchildren. Acta Stomatol. Croat. 2018, 52, 4–11. [Google Scholar] [CrossRef]
- Villanueva-Gutiérrez, T.; Irigoyen-Camacho, M.E.; Castaño-Seiquier, A.; Zepeda-Zepeda, M.A.; Sanchez-Pérez, L.; Frechero, N.M. Prevalence and severity of molar–incisor hypomineralization, maternal education, and dental caries: A cross-sectional study of Mexican schoolchildren with low socioeconomic status. J. Int. Soc. Prevent. Community Dent. 2019, 9, 513–521. [Google Scholar]
- Davenport, M.; Welles, A.D.; Angelopoulou, M.V.; Gonzalez, C.; Okunseri, C.; Barbeau, L.; Bansal, N.K.; Vergotine, R.J.; Hodgson, B.D. Prevalence of molar-incisor hypomineralization in Milwaukee, Wisconsin, USA: A pilot study. Clin. Cosmet. Investig. Dent. 2019, 30, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Elzein, R.; Chouery, E.; Abdel-Sater, F.; Bacho, R.; Ayoub, F. Molar incisor hypomineralisation in Lebanon: Prevalence and clinical characteristics. Eur. Arch. Paediatr. Dent. 2020, 21, 609–616. [Google Scholar] [CrossRef]
- Emmatty, T.B.; Eby, A.; Joseph, M.J.; Bijimole, J.; Kavita, K.; Asif, I. The prevalence of molar incisor hypomineralization of school children in and around Muvattupuzha, Kerala. J. Indian Soc. Pedod. Prev. Dent. 2020, 38, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.M.F.; Zhou, Y.; Vieira, F.G.F.; Carvalho, F.M.; Costa, M.C.; Vieira, A.R. Defining the prevalence of molar incisor hypomineralization in Brazil. Pesqui. Bras. Odontopediatria Clín. Integr. 2020, 20, e5146. [Google Scholar] [CrossRef]
- Pentapati, K.C.; Yeturu, S.K.; Siddiq, H. Systematic review and meta-analysis of the prevalence of molar-incisor hypomineralization. J. Int. Oral Health 2017, 9, 243–250. [Google Scholar] [CrossRef]
- Schwendicke, F.; Elhennawy, K.; Reda, S.; Bekes, K.; Manton, D.J.; Krois, J. Global burden of molar incisor hypomineralization. J. Dent. 2018, 68, 10–18, Erratum in J. Dent. 2019, 80, 89–92. [Google Scholar] [CrossRef]
- Ghanim, A.; Mariño, R.; Morgan, M.; Bailey, D.; Manton, D. An in vivo investigation of salivary properties, enamel hypomineralisation, and carious lesion severity in a group of Iraqi schoolchildren. Int. J. Paediatr. Dent. 2013, 23, 2–12. [Google Scholar] [CrossRef]
- Americano, G.C.; Jacobsen, P.E.; Soviero, V.M.; Haubek, D. A systematic review on the association between molar incisor hypomineralization and dental caries. Int. J. Paediatr. Dent. 2017, 27, 11–21. [Google Scholar] [CrossRef]
- Grossi, J.A.; Cabral, R.N.; Leal, S.C. Caries experience in children with and without molar-incisor hypomineralisation: A case-control study. Caries Res. 2017, 51, 419–424. [Google Scholar] [CrossRef]
- William, V.; Messer, L.B.; Burrow, M.F. Molar incisor hypomineralization: Review and recommendations for clinical management. Pediatr. Dent. 2006, 28, 224–232. [Google Scholar]
- Rathee, M.; Sapra, A. Dental Caries. In Stat Pearls; Stat. Pearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK551699/ (accessed on 28 September 2022).
- Guo, L.; Shi, W. Salivary biomarkers for caries risk assessment. J. Calif. Dent. Assoc. 2013, 41, 107–109, 112–118. [Google Scholar]
- Aldossary, M.S.; Alamri, A.A.; Alshiha, S.A.; Hattan, M.A.; Alfraih, Y.K.; Alwayli, H.M. Prevalence of dental caries and fissure sealants in the first permanent molars among male children in Riyadh, Kingdom of Saudi Arabia. Int. J. Clin. Pediatr. Dent. 2018, 11, 365–370. [Google Scholar] [CrossRef]
- Skeie, M.S.; Raadal, M.; Strand, G.V.; Espelid, I. The relationship between caries in the primary dentition at 5 years of age and permanent dentition at 10 years of age—A longitudinal study. Int. J. Paediatr. Dent. 2006, 16, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Teo, T.K.; Ashley, P.F.; Parekh, S.; Noar, J. The evaluation of spontaneous space closure after the extraction of first permanent molars. Eur. Arch. Paediatr. Dent. 2013, 14, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C. Enamel maturation: A brief background with implications for some enamel dysplasias. Front. Physiol. 2014, 5, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, R.J. The primary and mixed dentition, post-eruptive enamel maturation and dental caries: A review. Int. Dent. J. 2013, 63 (Suppl. 2), 13. [Google Scholar] [CrossRef]
- Alves, L.S.; Zenkner, J.E.; Wagner, M.B.; Damé-Teixeira, N.; Susin, C.; Maltz, M. Eruption stage of permanent molars and occlusal caries activity/arrest. J. Dent. Res. 2014, 93, 114S–119S. [Google Scholar] [CrossRef] [Green Version]
- Mejàre, I.; Axelsson, S.; Dahlén, G.; Espelid, I.; Norlund, A.; Tranæus, S.; Twetman, S. Caries risk assessment. A systematic review. Acta Odontol. Scand. 2014, 72, 81–91. [Google Scholar] [CrossRef]
- Noronha, J.C.; Massara Mde, L.; Souki, B.Q.; Nogueira, A.P. First permanent molar: First indicator of dental caries activity in initial mixed dentition. Braz. Dent. J. 1999, 10, 99–104. [Google Scholar]
- Que, L.; Jia, M.; You, Z.; Jiang, L.C.; Yang, C.G.; Quaresma, A.A.D.; das Neves, E.M.A.A. Prevalence of dental caries in the first permanent molar and associated risk factors among sixth-grade students in São Tomé Island. BMC Oral health 2021, 21, 483. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Ekstrand, K.R.; Thylstrup, A. Dental plaque and caries on occlusal surfaces of first permanent molars in relation to stage of eruption. J. Dent. Res. 1989, 68, 773–779. [Google Scholar] [CrossRef]
- Brailsford, S.R.; Sheehy, E.C.; Gilbert, S.C.; Clark, D.T.; Kidd, E.A.; Zoitopoulos, L.; Adams, S.E.; Visser, J.M.; Beighton, D. The microflora of the erupting first permanent molar. Caries Res. 2005, 39, 78–84. [Google Scholar] [CrossRef]
- Hamza, M.; Chlyah, A.; Bousfiha, B.; Badre, B.; Mtalsi, M.; Saih, H.; Arabi, S.E. Pathology and Abnormality of the First Permanent Molar among Children. In Human Teeth—Key Skills and Clinical Illustrations; Akarslan, Z., Bourzgui, F., Eds.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/69760 (accessed on 15 September 2022). [CrossRef] [Green Version]
- Llena, C.; Calabuig, E.; Sanz, J.L.; Melo, M. Risk Factors Associated with Carious Lesions in Permanent First Molars in Children: A Seven-Year Retrospective Cohort Study. Int. J. Environ. Res. Public Health 2020, 17, 1421. [Google Scholar] [CrossRef]
- Mejàre, I.; Stenlund, H. Caries rates for the mesial surface of the first permanent molar and the distal surface of the second primary molar from 6 to 12 years of age in Sweden. Caries Res. 2000, 34, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Ripa, L.W.; Leske, G.S.; Varma, A.O. Longitudinal study of the caries susceptibility of occlusal and proximal surfaces of first permanent molars. J. Public. Health Dent. 1988, 48, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Llena, C.; Calabuig, E. Risk factors associated with new caries lesions in permanent first molars in children: A 5-year historical cohort follow-up study. Clin. Oral Investig. 2018, 22, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Togoo, R.A.; Yaseen, S.M.; Zakirulla, M.; Al Garni, F.; Khoraj, A.L.; Meer, A. Prevalance of first permanent molar caries among 7–10 years old school going boys in Abha city, Saudi Arabia. J. Int. Oral Health 2011, 3, 29–34. [Google Scholar]
- Phipps, K.R.; Ricks, T.L.; Blahut, P. Permanent first molar eruption and caries patterns in American Indian and Alaska Native children: Challenging the concept of targeting second grade for school-based sealant programs. J. Public Health Dent. 2013, 73, 175–178. [Google Scholar] [CrossRef]
- Wasnik, M.; Sajjanar, A.; Kumar, S.; Bhayade, S.; Gahlod, N.; Rajewar, S.; Bhattad, D.; Shukla, H. Prevalence of first permanent molar caries among 6–10 year old school going children in Nagpur region. Eur. J. Mol. Clin. Med. 2021, 8, 1417–1431. [Google Scholar]
- Alwayli, H.M.; Alshiha, S.A.; Alfraih, Y.K.; Hattan, M.A.; Alamri, A.A.; Aldossary, M.S. A survey of fissure sealants and dental caries prevalence in the first permanent molars among primary school girls in Riyadh, Saudi Arabia. Eur. J. Dent. 2017, 11, 455–460. [Google Scholar] [CrossRef]
- Aras, A.; Dogan, M.S. Caries prevalence and severity in immature permanent first molar teeth in Sanliurfa city, Turkey. J. Dent. Indones. 2020, 27, 13–16. [Google Scholar] [CrossRef]
- Alraqiq, H.; Eddali, A.; Boufis, R. Prevalence of dental caries and associated factors among school-aged children in Tripoli, Libya: A cross-sectional study. BMC Oral Health 2021, 21, 224. [Google Scholar] [CrossRef] [PubMed]
- Mahboobi, Z.; Pakdaman, A.; Yazdani, R.; Azadbakht, L.; Shamshiri, A.R.; Babaei, A. Caries incidence of the first permanent molars according to the Caries Assessment Spectrum and Treatment (CAST) index and its determinants in children: A cohort study. BMC Oral Health 2021, 21, 259. [Google Scholar] [CrossRef] [PubMed]
- Duman, S.; Duruk, G. The evaluation of the clinical and radiographic records of the first molar teeth in pediatric patients. Ann. Med. Res. 2021, 26, 2333–2339. [Google Scholar] [CrossRef]
- Vanderas, A.P.; Kavvadia, K.; Papagiannoulis, L. Development of caries in permanent first molars adjacent to primary second molars with interproximal caries: Four-year prospective radiographic study. Pediatr. Dent. 2004, 26, 362–368. [Google Scholar]
- Mejàre, I.; Stenlund, H.; Julihn, A.; Larsson, I.; Permert, L. Influence of approximal caries in primary molars on caries rate for the mesial surface of the first permanent molar in Swedish children from 6 to 12 years of age. Caries Res. 2001, 35, 178–185. [Google Scholar] [CrossRef]
- Leroy, R.; Bogaerts, K.; Lesaffre, E.; Declerck, D. Effect of caries experience in primary molars on cavity formation in the adjacent permanent first molar. Caries Res. 2005, 39, 342–349. [Google Scholar] [CrossRef]
- Jafari, A.; Aslani, S.; Zangooei, M.; Hessari, H.; Shamshiri, A.R.; Kargar, M.; Mehran, M. Effect of Primary Molar Caries on Caries Development in the Adjacent Permanent First Molars. Front. Dent. 2021, 18, 24. [Google Scholar] [CrossRef]
- Keightley, A.J.; Surendran, S. Management of Dental Caries in the Young Permanent Teeth. In Paediatric Dentistry for the General Dental Practitioner; Albadri, S., Stevens, C.L., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 201–224. [Google Scholar]
- Khouja, T.; Smith, K.J. Cost-effectiveness analysis of two caries prevention methods in the first permanent molar in children. J. Public Health Dent. 2018, 78, 118–126. [Google Scholar] [CrossRef]
- Blinder Fuks, A.; Heling, I.; Nuni, E. Pulp Therapy for the Young Permanent Dentition. In Pediatric Dentistry, Infancy through Adolescence; Casamassimo, P.S., Fields, H.W., McTigue, D.J., Nowak, A.J., Eds.; Elsevier Saunders: St. Louis, MO, USA, 2013; pp. 490–502. [Google Scholar]
- Gill, D.S.; Lee, R.T.; Tredwin, C.J. Treatment planning for the loss of first permanent molars. Dent. Update 2001, 28, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Eichenberger, M.; Erb, J.; Zwahlen, M.; Schätzle, M. The timing of extraction of non-restorable first permanent molars: A systematic review. Eur. J. Paediatr. Dent. 2015, 16, 272–278. [Google Scholar]
- Saber, A.M.; Altoukhi, D.H.; Horaib, M.F.; El-Housseiny, A.A.; Alamoudi, N.M.; Sabbagh, H.J. Consequences of early extraction of compromised first permanent molar: A systematic review. BMC Oral Health 2018, 18, 59. [Google Scholar] [CrossRef] [PubMed]
- Teo, T.K.; Ashley, P.F.; Derrick, D. Lower first permanent molars: Developing better predictors of spontaneous space closure. Eur. J. Orthod. 2016, 38, 90–95. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Sample | Number of Subjects with Ectopic Eruption | Prevalence in Relation to Age | Gender Distribution | Number of Ectopic Molars | Prevalence in Relation to Dental Arch | Prevalence in Relation to Side |
---|---|---|---|---|---|---|---|---|
Barberia-Leache et al. [17] | 2005 | 509 | 22 (4.3%) | average age in the affected group: 7 y 6 mo | F-9 (41%) M-13 (59%) | 36 | Only maxillary FPM was assessed | B-63.6% U-36.4% • R-75% • L-25% |
Mucedero et al. [18] | 2015 | 1052 | 26 (2.5%) | average age in the affected group: 8 y 2 mo ± 9 mo | F-12 (46.2) M-14 (53.8) | NS | Only maxillary FPM was assessed | B-20 U-6 |
Mooney et al. [20] | 2007 | 48 | 28 | average age in the affected group: 8.5 y | NS | 49 | Mx-45 (91.8%) m-4 (8.2%) | Equal R/L distribution |
Aldowsari et al. [25] | 2021 | 2014 | 45 (2.2%) | 5 y-10.4% 6 y-22.6% 7 y-33.3% 8 y-33.7% | F-17 (37.7%) M-28 (62.3%) | 60 | Mx-47 FPMs (78.4%) m-13 FPMs (21.6%) | Similar R/L rates |
Chintakanon et al. [27] | 1998 | 3612 | 27 (0.75%) | 6–9 y | F-7 (25.9%) M-20 (74.1%) | NS | NS | NS |
Mendoza-Mendoza et al. [28] | 2014 | 505 | 34 (6.7%) | 5 y-5.9% 6 y-20.6% 7 y-32.4% 8 y-41.2% | F-16 (47.1%) M-18 (52.9%) | NS | Only maxillary FPM was assessed | B-67.6% U-32.4% |
Guven [29] | 2018 | 7649 | 203 (2.65%) | average age in the affected group: 6.82 ± 1.25 | F-85 (41.9%) M-118 (58.1%) | 273 | Mx-157 (57.5%) m-116 (42.5%) | B-59 (29.1%) U-144 (70.9%) |
Hali et al. [30] | 2021 | 772 | 79 (10.2%) | 5 y-0.9% 6 y-9.3% 7 y-13% 8 y-12.9% | F-48 (61%) M-31 (39%) | 145 | Mx-19% m-59.5% Both Mx and m: 21.5% | NS |
Chen et al. [31] | 2021 | 11,403 | 409 (3.6%) | mostly in 6–7 y | F-144 (35.2) M-265 (64.8) | 634 | Mx-89.7% m-10.3% | mostly symmetrically |
Study | Year | Sample | Prevalence of MIH | Gender Distribution | Degree of Severity of Affected Molars | ||
---|---|---|---|---|---|---|---|
Mild | Moderate | Severe | |||||
Martínez Gómez et al. [73] | 2012 | 505 | 90 (17.85%) | F-45 (50%) M-45 (50%) | 45 (50%) | 26 (28.89%) | 19 (21.11%) |
Ghanim et al. [74] | 2014 | 810 | 164 (20.2%) | F-96 (58.5%) M-68 (41.5%) | 17.1% C/W 41.6% Y/B | 31.3% | 10% |
Koruyucu et al. [75] | 2018 | 1511 | 215 (14.2%) | F-113 (52.6% M-102 (47.4%) | NS | NS | NS |
Hernández et al. [76] | 2018 | 705 | 56 (7.94%) | F-34 (60.7%) M-22 (39.3%) | NS | NS | NS |
Villanueva-Gutierrez et al. [77] | 2019 | 686 | 243 (35.4%) | F-120 (49.4%) M-123 (50.6%) | 45 (18.5%) | 163 (67.1%) | 35 (14.4%) |
Thakur et al. [56] | 2020 | 2000 | 58 (2.9%) | NS | 70,8% | 20.6% | 8.6% |
Elzein et al. [79] | 2020 | 659 | 176 (26.7%) | F-96 (54.55%) M-80 (45.45%) | 74.45% | 23.04% | 2.51% |
Emmatty et al. [80] | 2020 | 5318 | 216 (4.1%) | F-96 M-120 | 361 (53.5%) | 103 (15.3%) | 210 (31.2%) |
Silva et al. [81] | 2020 | 407 | 59 (14.5%) | F-26 (44.1%) M-33 (55.9%) | 68.75% | - | 31.25% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoica, S.N.; Nimigean, V.; Vîrlan, M.J.R.; Nimigean, V.R. The Pathology of the First Permanent Molar during the Mixed Dentition Stage—Review. Appl. Sci. 2023, 13, 483. https://doi.org/10.3390/app13010483
Stoica SN, Nimigean V, Vîrlan MJR, Nimigean VR. The Pathology of the First Permanent Molar during the Mixed Dentition Stage—Review. Applied Sciences. 2023; 13(1):483. https://doi.org/10.3390/app13010483
Chicago/Turabian StyleStoica, Stephanie Nicole, Victor Nimigean, Maria Justina Roxana Vîrlan, and Vanda Roxana Nimigean. 2023. "The Pathology of the First Permanent Molar during the Mixed Dentition Stage—Review" Applied Sciences 13, no. 1: 483. https://doi.org/10.3390/app13010483
APA StyleStoica, S. N., Nimigean, V., Vîrlan, M. J. R., & Nimigean, V. R. (2023). The Pathology of the First Permanent Molar during the Mixed Dentition Stage—Review. Applied Sciences, 13(1), 483. https://doi.org/10.3390/app13010483