Improved Evaluation of Cultivation Performance for Maize Based on Group Decision Method of Data Envelopment Analysis Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Data
2.3. Independent Validation
2.4. Models and Tools
2.4.1. CCR Model
2.4.2. GDM-DEA Method
2.4.3. Min–Max Standardization
2.4.4. Orthogonal Design
2.4.5. Solution Software
3. Results
3.1. Generalized Summary of JLASTU Experiment
3.2. Comparative Analysis with CCR Model and GDM-DEA Method for JLASTU Experiment
3.3. Cultivation Measure Selection
3.4. Independent Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benz, B.F. Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca. Proc. Natl. Acad. Sci. USA 2001, 98, 2104–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Nussbaum-Wagler, T.; Li, B.; Zhao, Q.; Vigouroux, Y.; Faller, M.; Bomblies, K.; Lukens, L.; Doebley, J.F. The origin of the naked grains of maize. Nature 2005, 436, 714–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. FAO Statistical Pocketbook 2015: World Food and Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Qi, R.; Ma, Y.; Hu, B.; de Reffye, P.; Cournède, P.-H. Optimization of source–sink dynamics in plant growth for ideotype breeding: A case study on maize. Comput. Electron. Agric. 2010, 71, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.P.; Zhang, F.S.; Cui, Z.L.; Li, F.; Li, J.L. Optimizing Soil Nitrogen Supply in the Root Zone to Improve Maize Management. Soil Sci. Soc. Am. J. 2010, 74, 1367–1373. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, F.; Mi, G.; Chen, F.; Li, F.; Chen, X.; Li, J.; Shi, L. Interaction between genotypic difference and nitrogen management strategy in determining nitrogen use efficiency of summer maize. Plant Soil 2009, 317, 267–276. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Pampolino, M.F.; Johnston, A.M.; Qiu, S.; Zhao, S.; Chuan, L.; Zhou, W. Fertilizer recommendation for maize in China based on yield response and agronomic efficiency. Field Crop. Res. 2014, 157, 27–34. [Google Scholar] [CrossRef]
- Du, X.; Wang, Z.; Lei, W.; Kong, L. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci. Rep. 2021, 11, 358. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Hou, P.; Liu, G.; Liu, W.; Wang, Y.; Zhao, R.; Ming, B.; Xie, R.; Wang, K.; et al. Improving maize grain yield by matching maize growth and solar radiation. Sci. Rep. 2019, 9, 3635. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; He, P.; Qiu, S.; Pampolino, M.F.; Zhao, S.; Johnston, A.M.; Zhou, W. Estimating a new approach of fertilizer recommendation across small-holder farms in China. Field Crop. Res. 2014, 163, 10–17. [Google Scholar] [CrossRef]
- Xu, X.; He, P.; Pampolino, M.F.; Chuan, L.; Johnston, A.M.; Qiu, S.; Zhao, S.; Zhou, W. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crop. Res. 2013, 150, 115–125. [Google Scholar] [CrossRef]
- Wang, G.; Chen, J.; Zhou, Q.; Chu, X.; Zhou, X. Modelling analysis of water-use efficiency of maize in Heihe River Basin. Phys. Chem. Earth Parts A/B/C 2016, 96, 50–54. [Google Scholar] [CrossRef]
- Ku, Y.G.; Kang, D.H.; Lee, C.K.; Lee, S.Y.; Ryu, C.S.; Kim, D.E.; Polovka, M.; Namieśnik, J.; Gorinstein, S. Influence of different cultivation systems on bioactivity of asparagus. Food Chem. 2018, 244, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Färe, R.; Lovell, C.K. Measuring the technical efficiency of production. J. Econ. Theory 1978, 19, 150–162. [Google Scholar] [CrossRef]
- Bertocco, M.; Basso, B.; Sartori, L.; Martin, E. Evaluating energy efficiency of site-specific tillage in maize in NE Italy. Bioresour. Technol. 2008, 99, 6957–6965. [Google Scholar] [CrossRef] [PubMed]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Brožová, D.; Emrouznejad, A.; Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis, 2nd ed.; Policy; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Singh, P.; Singh, G.; Sodhi, G. Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India. Energy 2019, 181, 18–28. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Sodhi, G.; Sharma, S. Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India. Energy 2021, 230, 120680. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Sodhi, G.P.S. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy 2019, 174, 269–279. [Google Scholar] [CrossRef]
- Singh, G.; Singh, P.; Sodhi, G.; Tiwari, D. Energy auditing and data envelopment analysis (DEA) based optimization for increased energy use efficiency in wheat cultivation (Triticum aestium L.) in north-western India. Sustain. Energy Technol. Assessments 2021, 47, 101453. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Sodhi, G.P.S. Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: Methods and a case study of north-western India. Environ. Dev. Sustain. 2021, 24, 2079–2119. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Mohtasebi, S.S.; Avval, S.H.M.; Rafiee, H. Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach. Renew. Energy 2011, 36, 2573–2579. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach. Appl. Energy 2011, 88, 3765–3772. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Taromi, K. Applying data envelopment analysis approach to improve energy efficiency and reduce greenhouse gas emission of rice production. Eng. Agric. Environ. Food 2014, 7, 155–162. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Hosseinzadeh-Bandbafha, H.; Qasemi-Kordkheili, P.; Kouchaki-Penchah, H.; Riahi-Dorcheh, F. Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production. Energy 2016, 103, 672–678. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Yazdani, R.; Shadkam, E.; Khalili, S.M.; Tavassoli, L.S.; Boskabadi, A. A Novel Hybrid Parametric and Non-Parametric Optimisation Model for Average Technical Efficiency Assessment in Public Hospitals during and Post-COVID-19 Pandemic. Bioengineering 2021, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Yazdani, M. Developing a Novel Integrated Generalised Data Envelopment Analysis (DEA) to Evaluate Hospitals Providing Stroke Care Services. Bioengineering 2021, 8, 207. [Google Scholar] [CrossRef]
- Peykani, P.; Memar-Masjed, E.; Arabjazi, N.; Mirmozaffari, M. Dynamic Performance Assessment of Hospitals by Applying Credibility-Based Fuzzy Window Data Envelopment Analysis. Healthcare 2022, 10, 876. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.; Li, J.; Li, S.; Zhang, D.; Wu, D.; Pan, S.; Chen, W. Spatial correlation among cultivated land intensive use and carbon emission efficiency: A case study in the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 43341–43360. [Google Scholar] [CrossRef]
- Nabavi-Pelesaraei, A.; Abdi, R.; Rafiee, S.; Mobtaker, H.G. Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. J. Clean. Prod. 2014, 65, 311–317. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Dalgaard, T.; Knudsen, M.T.; Keyhani, A.; Mousavi-Avval, S.H.; Hermansen, J.E. Potential greenhouse gas emission reductions in soybean farming: A combined use of Life Cycle Assessment and Data Envelopment Analysis. J. Clean. Prod. 2013, 54, 89–100. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Nguyen, T.L.T.; Borek, R.; Hermansen, J.E. Joint Life Cycle Assessment and Data Envelopment Analysis for the benchmarking of environmental impacts in rice paddy production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Payandeh, Z.; Jahanbakhshi, A.; Mesri-Gundoshmian, T.; Clark, S. Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach. Sustainability 2021, 13, 6082. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D. Assessing the eco-efficiency of complex forestry enterprises using LCA/time-series DEA methodology. Ecol. Indic. 2022, 142, 109166. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Yazdani, M.; Boskabadi, A.; Dolatsara, H.A.; Kabirifar, K.; Golilarz, N.A. A Novel Machine Learning Approach Combined with Optimization Models for Eco-Efficiency Evaluation. Appl. Sci. 2020, 10, 5210. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Shadkam, E.; Khalili, S.M.; Kabirifar, K.; Yazdani, R.; Gashteroodkhani, T.A. A novel artificial intelligent approach: Comparison of machine learning tools and algorithms based on optimization DEA Malmquist productivity index for eco-efficiency evaluation. Int. J. Energy Sect. Manag. 2021, 15, 523–550. [Google Scholar] [CrossRef]
- Gutiérrez, E.; Aguilera, E.; Lozano, S.; Guzmán, G.I. A two-stage DEA approach for quantifying and analysing the inefficiency of conventional and organic rain-fed cereals in Spain. J. Clean. Prod. 2017, 149, 335–348. [Google Scholar] [CrossRef]
- Ndlovu, P.V.; Mazvimavi, K.; An, H.; Murendo, C. Productivity and efficiency analysis of maize under conservation agriculture in Zimbabwe. Agric. Syst. 2014, 124, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Abdulai, S.; Nkegbe, P.K.; Donkoh, S.A. Assessing the technical efficiency of maize production in northern Ghana: The data envelopment analysis approach. Cogent Food Agric. 2018, 4, 1512390. [Google Scholar] [CrossRef]
- Ogundari, K.; Ojo, S.; Ajibefun, I. Economies of Scale and Cost Efficiency in Small Scale Maize Production: Empirical Evidence from Nigeria. J. Soc. Sci. 2006, 13, 131–136. [Google Scholar] [CrossRef]
- Aye, G.C.; Mungatana, E.D. Technical efficiency of traditional and hybrid maize farmers in Nigeria: Comparison of alternative approaches. African J. Agric. Res. 2010, 5, 2909–2917. [Google Scholar] [CrossRef] [Green Version]
- Mwambo, F.M.; Fürst, C. A Holistic Method of Assessing Efficiency and Sustainability in Agricultural Production Systems. J. Environ. Account. Manag. 2019, 7, 29–45. [Google Scholar] [CrossRef]
- Rybaczewska-Błażejowska, M.; Masternak-Janus, A. Eco-efficiency assessment of Polish regions: Joint application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2018, 172, 1180–1192. [Google Scholar] [CrossRef]
- Ullah, A.; Perret, S.R. Technical- and Environmental-Efficiency Analysis of Irrigated Cotton-Cropping Systems in Punjab, Pakistan Using Data Envelopment Analysis. Environ. Manag. 2014, 54, 288–300. [Google Scholar] [CrossRef]
- Sun, Y. A study on the yield function model of corn applied main cultural practices. J Jilin Agric Univ. 1987, 9, 11–14. [Google Scholar]
- Yu, G. Study on the mathematical model of agriculture integrated measures for high yield of corn in dry land. Maize Sci. 1999, 7, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.B.; Shi, C.Q.; Wang, B.; Yan, F.Y.; Tang, Y.Y.; Huang, A.X.; Zheng, J.X.; Huang, F.L. Effect of Different Density Fertilizer Combinations on the Yield of a New Corn Variety Zhaofeng 588 in Guangxi. J Southern Agric. 2014, 45, 1612–1615. [Google Scholar]
- Wang, X.; Shen, L.; Qi, Y. Selection on varieties of glutinous maize and its cultivation technique for high yield. Guizhou Agric. Sci. 2005, 5, 35–77. [Google Scholar]
- Nilahyane, A.; Islam, M.A.; Mesbah, A.O.; Garcia, A.G.Y. Effect of Irrigation and Nitrogen Fertilization Strategies on Silage Corn Grown in Semi-Arid Conditions. Agronomy 2018, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.C.; Guo, W.Y.; Liang, J.; Xiao, H.Y.; Hao, X.Y.; Hou, A.F.; Zong, X.X.; Leng, T.R.; Wang, Y.J.; Wang, Q.Y. Effects of multiple N, P, and K fertilizer combinations on adzuki bean (Vigna angularis) yield in a semi-arid region of northeastern China. Sci. Rep. 2019, 9, 19408. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, K.; Wang, R.; Tong, Z.; Zhang, J. Yield Data Provide New Insight into the Dynamic Evaluation of Maize’s Climate Suitability: A Case Study in Jilin Province, China. Atmosphere 2019, 10, 305. [Google Scholar] [CrossRef] [Green Version]
- Tang, G. Study on super high yield cultivation techniques of a new hybrid maize variety Shundan 6 in medium and high altitude areas—Ⅰ preliminary study on the effects of density and nitrogen, phosphorus and potassium on yield and main economic characters. Seed 2009, 28, 119–122. [Google Scholar]
- Pan, Z. Study on high yield cultivation techniques of new hybrid maize variety Jin Guidan No.3 in the central part of Gui Zhou province. China Seed Ind. 2020, 39–41. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, L. Effect analysis of combined application of nitrogen, phosphorus and potassium and density on maize yield. Jiangsu Agric. Sci. 2015, 43, 67–69. [Google Scholar]
- Finney, K.; Fenton, N. Evaluating the effectiveness of Z: The claims made about CICS and where we go from here. J. Syst. Softw. 1996, 35, 209–216. [Google Scholar] [CrossRef]
- Liu, X. Intirety D-Optimal Designs for Partial Linear-Quadratic Mixture Models. J. Northeast Univ. Nat. Sci. 1997, 18, 197–200. [Google Scholar]
- Tang, Q.-Y.; Zhang, C.-X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2012, 20, 254–260. [Google Scholar] [CrossRef]
- Aviso, K.B.; Tan, R.R.; Foo, D.C.; Lee, J.-Y.; Ubando, A.T. Data set and model code on the optimal operating state of a negative emission polygeneration system. Data Brief 2020, 29, 105140. [Google Scholar] [CrossRef]
Variable (Xi) | Changes in Pitch | Design Level (r) | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | ||
Density (X1) | 1 (10,000 plants/ha) | 5 | 6 | 7 | 8 | 9 |
N (X2) | 40 (kg/ha) | 160 | 200 | 240 | 280 | 320 |
P2O5 (X3) | 20 (kg/ha) | 80 | 100 | 120 | 140 | 160 |
K2O (X4) | 30 (kg/ha) | 60 | 90 | 120 | 150 | 180 |
Group Code | x1 | x2 | x3 | x4 | Production (kg/ha) |
---|---|---|---|---|---|
1 | −1 | −1 | −1 | −1 | 11,486.7 |
2 | −1 | −1 | −1 | 1 | 10,538.1 |
3 | −1 | −1 | 1 | −1 | 11,886.9 |
4 | −1 | −1 | 1 | 1 | 11,243.8 |
5 | −1 | 1 | −1 | −1 | 11,059.9 |
6 | −1 | 1 | −1 | 1 | 11,430.5 |
7 | −1 | 1 | 1 | −1 | 12,093.7 |
8 | −1 | 1 | 1 | 1 | 12,895.3 |
9 | 1 | −1 | −1 | −1 | 12,043.9 |
10 | 1 | −1 | −1 | 1 | 12,043.4 |
11 | 1 | −1 | 1 | −1 | 12,006.4 |
12 | 1 | −1 | 1 | 1 | 12,246.6 |
13 | 1 | 1 | −1 | −1 | 12,738.7 |
14 | 1 | 1 | −1 | 1 | 13,001.6 |
15 | 1 | 1 | 1 | −1 | 12,063.6 |
16 | 1 | 1 | 1 | 1 | 13,641.3 |
17 | −2 | 0 | 0 | 0 | 10,151.1 |
18 | 2 | 0 | 0 | 0 | 12,383.8 |
19 | 0 | −2 | 0 | 0 | 12,997.4 |
20 | 0 | 2 | 0 | 0 | 13,007.9 |
21 | 0 | 0 | −2 | 0 | 11,758.3 |
22 | 0 | 0 | 2 | 0 | 12,823.3 |
23 | 0 | 0 | 0 | −2 | 10,720.7 |
24 | 0 | 0 | 0 | 2 | 11,864.9 |
25 | 0 | 0 | 0 | 0 | 11,442.4 |
26 | 0 | 0 | 0 | 0 | 11,969.2 |
27 | 0 | 0 | 0 | 0 | 12,208.1 |
28 | 0 | 0 | 0 | 0 | 11,911.5 |
29 | 0 | 0 | 0 | 0 | 11,801.6 |
30 | 0 | 0 | 0 | 0 | 12,032.9 |
31 | 0 | 0 | 0 | 0 | 11,783.5 |
32 | 0 | 0 | 0 | 0 | 11,682.2 |
33 | 0 | 0 | 0 | 0 | 12,082.6 |
34 | 0 | 0 | 0 | 0 | 11,994.8 |
35 | 0 | 0 | 0 | 0 | 11,576.7 |
36 | 0 | 0 | 0 | 0 | 11,835.9 |
Group Code | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
CCR efficiency value | 1.000 | 0.917 | 1.000 | 0.944 | 0.963 | 0.995 | 1.000 | 1.000 | 1.000 | 0.973 | 0.997 | 0.815 |
GDM-DEA efficiency value | 1.045 | 0.917 | 0.961 | 0.878 | 0.956 | 0.952 | 0.938 | 1.064 | 0.852 | 0.852 | 0.799 | 0.792 |
Group Code | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
CCR efficiency value | 1.000 | 0.941 | 0.887 | 0.877 | 0.951 | 0.852 | 1.000 | 0.962 | 1.000 | 0.919 | 1.000 | 0.878 |
GDM-DEA efficiency value | 0.869 | 0.887 | 0.776 | 0.877 | 0.934 | 0.766 | 1.039 | 0.927 | 0.971 | 0.890 | 0.793 | 0.878 |
Group Code | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
CCR efficiency value | 0.846 | 0.885 | 0.903 | 0.881 | 0.873 | 0.890 | 0.872 | 0.864 | 0.894 | 0.887 | 0.856 | 0.876 |
GDM-DEA efficiency value | 0.846 | 0.885 | 0.903 | 0.881 | 0.873 | 0.890 | 0.872 | 0.864 | 0.894 | 0.887 | 0.856 | 0.876 |
Independent Experiment | Planting Density (Plants/ha) | Nitrogen Fertilizer (kg/ha) | Phosphate Fertilizer (kg/ha) | Potash Fertilizer (kg/ha) | Yield (kg/ha) | |
---|---|---|---|---|---|---|
Anshun Pan experiment | Results obtained by statistical method | 52,830–55,170 | 160.5–187.5 | 142.5–157.5 | 154.5–175.5 | ≥10,527.15 |
GDM-DEA optimal cultivation measures | 54,000 | 174 | 150 | 165 | 11,943 | |
Anshun Tang experiment | Results obtained by statistical method | 63,000–65,055 | 245.55–351.3 | 187.65–244.5 | 278.4–340.5 | ≥12,000 |
GDM-DEA optimal cultivation measures | 64,035 | 360 | 240 | 240 | 13,502.1 | |
Chifeng Zheng experiment | Results obtained by statistical method | 52,500 | 750 | 375 | 187.5 | 16,072.35 |
GDM-DEA optimal cultivation measures | 52,500 | 600 | 225 | 150 | 14,222.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Li, H.; Chen, K.; Teng, X.; Cui, Y.; Yu, H.; Bi, C.; Huang, M.; Tang, Y. Improved Evaluation of Cultivation Performance for Maize Based on Group Decision Method of Data Envelopment Analysis Model. Appl. Sci. 2023, 13, 521. https://doi.org/10.3390/app13010521
Huang W, Li H, Chen K, Teng X, Cui Y, Yu H, Bi C, Huang M, Tang Y. Improved Evaluation of Cultivation Performance for Maize Based on Group Decision Method of Data Envelopment Analysis Model. Applied Sciences. 2023; 13(1):521. https://doi.org/10.3390/app13010521
Chicago/Turabian StyleHuang, Wei, Han Li, Kaifeng Chen, Xiaohua Teng, Yumeng Cui, Helong Yu, Chunguang Bi, Meng Huang, and You Tang. 2023. "Improved Evaluation of Cultivation Performance for Maize Based on Group Decision Method of Data Envelopment Analysis Model" Applied Sciences 13, no. 1: 521. https://doi.org/10.3390/app13010521
APA StyleHuang, W., Li, H., Chen, K., Teng, X., Cui, Y., Yu, H., Bi, C., Huang, M., & Tang, Y. (2023). Improved Evaluation of Cultivation Performance for Maize Based on Group Decision Method of Data Envelopment Analysis Model. Applied Sciences, 13(1), 521. https://doi.org/10.3390/app13010521