Activity Evaluation Methodology for the Disposed Medical Linear Accelerators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sourcing a Disposed Medical Linac
2.2. Proposing an Activity Evaluation Methodology for Linac
2.2.1. Dose Rate Measurements using a Survey Meter
2.2.2. Gamma Spectroscopy using an In Situ HPGe Detector
3. Results
3.1. Component Dose Rate Measurements
3.2. Gamma Spectroscopy of the Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radioactive Waste Safety Division, Nuclear Safety and Security Commission. Nuclear Safety and Security Commission Notification No. 2020-6, Regulations on Radioactive Waste Classification and Clearance Standards (Implementation and Revision in 2020.05.26); Radioactive Waste Safety Division, Nuclear Safety and Security Commission: Seoul, Republic of Korea, 2020. [Google Scholar]
- MOTIE. Radioactive Waste Control Act No. 15082 (Implementation and Revision in 2017.11.28); Ministry of Trade Industry and Energy (MOTIE): Seoul, Republic of Korea, 2017.
- Kwon, N.H.; Jang, Y.J.; Kim, D.W.; Shin, D.O.; Kim, K.B.; Kim, J.S.; Choi, S.H. Trend Analysis on Korean and International Management for Activated Material Waste from Medical Linear Accelerator. Prog. Med. Phys. 2020, 31, 194–204. [Google Scholar] [CrossRef]
- Hong, Y.; Jang, W.; Kim, J.; Lee, W. A Case Study of Procedures and Methods for Self-Disposal of Radioactive Wastes Generated after Nuclear Research and Development. J. Radiat. Ind. 2021, 15, 85–91. [Google Scholar]
- Pérot, B.; Jallu, F.; Passard, C.; Gueton, O.; Allinei, P.-G.; Loubet, L.; Estre, N.; Simon, E.; Carasco, C.; Roure, C.; et al. The characterization of radioactive waste: A critical review of techniques implemented or under development at CEA, France. EPJ Nucl. Sci. Technol. 2018, 4, 2018. [Google Scholar] [CrossRef]
- Amgarou, K.; Aspe, F.; Idoeta, R.; Herranz, M. Recommendations for the selection of in situ measurement techniques for radiological characterization in nuclear/radiological installations under decommissioning and dismantling processes. Prog. Nucl. Energy 2021, 137, 103761. [Google Scholar] [CrossRef]
- Hossain, I.; Sharip, N.; Viswanathan, K.K. Efficiency and resolution of HPGe and NaI (Tl) detectors using gamma-ray spectroscopy. Sci. Res. Essays 2012, 7, 86–89. [Google Scholar] [CrossRef]
- Vichi, S.; Dean, D.; Ricci, S.; Zagni, F.; Berardi, P.; Mostacci, D. Activation study of a 15MeV LINAC via Monte Carlo simulations. Radiat. Phys. Chem. 2020, 172, 108758. [Google Scholar] [CrossRef]
- Ajaj, F.A.A.; Ghassal, N.M.H. An MCNP-based model of a medical linear accelerator x-ray photon beam. Australas. Phys. Eng. Sci. Med. 2003, 26, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-J.; Kwon, N.H.; Park, S.H.; Choi, Y.; Yu, H.; Kim, K.B.; Kim, D.W.; Choi, S.H. Activation evaluation of Siemens linear accelerator using Monte Carlo simulation. J. Korean Phys. Soc. 2022, 81, 1107–1114. [Google Scholar] [CrossRef]
- Mirion Technologies (Canberra), Inc., ISOCS™ Calibration Software. Available online: https://www.mirion.com/products/s573-isocs-calibration-software (accessed on 10 October 2022).
- Mirion Technologies (Canberra), Inc., GC2018 Germanium Detectors Software. Available online: https://www.mirion.com/products/germanium-detectors (accessed on 17 July 2022).
- Mirion Technologies (Canberra), Inc., Genie 2000 Software. Available online: https://www.mirion.com/products/genie-2000-basic-spectroscopy-software (accessed on 17 July 2022).
- Jäderström, H.; Lester, R.; Bronson, F.; Venkataraman, R.; Atrashkevich, V. Validation of general purpose mathematical efficiency modeling with ISOCS—15579. In Proceedings of the WM2015: Annual Waste Management Symposium, Phoenix, AZ, USA, 15–19 March 2015. [Google Scholar]
- Jeong, H.C.; Jeong, S.Y. Assessment of the Radiological Inventory for the Reactor at Kori NPP Using In-Situ Measurement Technology. J. Nucl. Fuel Cycle Waste Technol. 2014, 12, 171–178. [Google Scholar] [CrossRef]
- Leong, L.S.; Beaujoin, J.; Tischenbach, E.; Chard, P. Fast, Accurate and Simple Modelling of Complex Objects with Innovative ISOCS-Based Service Tool for Cost-Effective Waste Management (IAEA-CN--294); International Atomic Energy Agency (IAEA): Vienna, Austria, 2021. [Google Scholar]
- Canadian Nuclear Safety Commission. Conditional Clearance Levels for the Disposal, Recycling and Reuse of Activated Medical Accelerator Components. 2018. Available online: http://nuclearsafety.gc.ca/eng/nuclear-substances/licensing-class-II-nuclear-facilities-and-prescribed-equipment/information-class-II-licensed-facilities/conditional-clearance-levels-activated-medical-accelerator-components.cfm?pedisable=true (accessed on 15 October 2022).
- Seo, B.K.; Lee, K.Y.; Yoon, Y.Y.; Jung, K.J.; Oh, W.Z.; Lee, K.W. Variation of the Detection Efficiency of a HPGe Detector with the Density of the Sample in the Radioactivity Analysis. Anal. Sci. Technol. 2005, 18, 59–65. [Google Scholar]
- Barrera, M.; Casas-Ruiz, M.; Alonso, J.J.; Vidal, J. Precise determination of HPGe detector efficiency for gamma spectrometry measurements of environmental samples with variable geometry and density. Nukleonika 2017, 62, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Joint Working Group of Medical Societies Related to Clearance and Radiotherapy in Japan. Society Standard for Radiotherapy Management in Radiotherapy Equipment. 2014.
Manufacturer (Model) | Canberra (GC2018) | |
Efficiency | 20% | |
Gamma energy resolution (Full width at half maximum) | 122 keV | 0.850 keV (0.70%) |
1332 keV | 1.8 keV (0.14%) | |
Software | Genie 2000 ver. 3.2 ISOCSTM (Geometry Composer ver. 4.2.1) |
Component | Material | Weight (g) | Volume (cm3) |
---|---|---|---|
Target | SST304, Graphite, Au, Fe, Cr, Ni | 20 g | 14.84 cm3 |
Target Holder | W | 3680 g | 152.0 cm3 |
Scattering foil | Brass, Au, Ag | 90 g | 8.06 cm3 |
15 MV primary collimator | W, Al | 4720 g | 343.18 cm3 |
6 MV primary collimator | W | 4720 g | 343.18 cm3 |
15 MV flattening filter | SST304 | 120 g | 14.84 cm3 |
6 MV flattening filter | SST304 | 100 g | 13.41 cm3 |
Ionization chamber | Al, Fe, Cr, Mg | 190 g | 23.98 cm3 |
Mirror | H, C, O | 50 g | 4.77 cm3 |
Y jaw | W | 31250 g | 1886.5 cm3 |
Multileaf collimator (MLC) | W | 740 g | 54.63 cm3 |
Shielding block | W | 16,060 g | 942.48 cm3 |
Background Dose Rate | 0.135 μSv/h | |||||
---|---|---|---|---|---|---|
Component/Distance | 0 cm | 1 cm | 2 cm | 3 cm | 4 cm | 5 cm |
Target | 26.856 | 15.984 | 11.300 | 7.902 | 5.674 | 4.205 * |
Target holder | 0.949 | 0.748 | 0.438 | 0.401 | 0.365 | 0.339 |
Scattering foil | 0.654 | 0.496 | 0.368 | 0.332 | 0.292 | 0.286 |
15 MV primary collimator | 7.650 | 4.918 | 3.330 | 2.282 | 1.930 | 1.228 * |
6 MV primary collimator | 0.223 | 0.206 | 0.181 | 0.176 | 0.173 | 0.175 |
15 MV flattening filter | 6.966 | 4.658 | 3.330 | 2.282 | 1.843 | 1.613 * |
6 MV flattening filter | 0.202 | 0.186 | 0.168 | 0.159 | 0.155 | 0.147 |
Ion chamber | 0.208 | 0.195 | 0.183 | 0.177 | 0.163 | 0.159 |
Mirror | 0.190 | 0.202 | 0.193 | 0.177 | 0.165 | 0.158 |
Y jaw | 0.798 | 0.496 | 0.408 | 0.350 | 0.328 | 0.262 |
Multileaf collimator (MLC) | 0.294 | 0.287 | 0.273 | 0.239 | 0.231 | 0.207 |
Shielding block | 0.822 | 0.543 | 0.392 | 0.364 | 0.355 | 0.310 |
Background Dose Rate | 0.137 μSv/h | |||||
---|---|---|---|---|---|---|
Component/Distance | 0 cm | 1 cm | 2 cm | 3 cm | 4 cm | 5 cm |
Target | 7.049 | 4.990 | 3.722 | 2.884 | 2.167 | 1.724 * |
Target holder | 0.570 | 0.333 | 0.269 | 0.244 | 0.221 | 0.208 |
Scattering foil | 0.414 | 0.341 | 0.272 | 0.240 | 0.231 | 0.203 |
15 MV primary collimator | 7.002 | 5.180 | 2.570 | 2.106 | 1.865 | 1.408 * |
6 MV primary collimator | 0.262 | 0.131 | 0.122 | 0.112 | 0.110 | 0.113 |
15 MV flattening filter | 3.636 | 2.416 | 2.246 | 1.570 | 1.220 | 1.030 * |
6 MV flattening filter | 0.160 | 0.136 | 0.127 | 0.113 | 0.109 | 0.104 |
Ion chamber | 0.118 | 0.111 | 0.116 | 0.118 | 0.118 | 0.116 |
Mirror | 0.134 | 0.121 | 0.115 | 0.124 | 0.111 | 0.109 |
Y jaw | 0.392 | 0.319 | 0.264 | 0.248 | 0.236 | 0.221 |
Multileaf collimator (MLC) | 0.202 | 0.185 | 0.184 | 0.174 | 0.163 | 0.149 |
Shielding block | 0.483 | 0.368 | 0.271 | 0.257 | 0.240 | 0.212 |
Component | Target | 15 MV Primary Collimator | 6 MV Primary Collimator | 15 MV Filter | 6 MV Filter | Ion Chamber | MLC | Mirror | Y Jaw | |
---|---|---|---|---|---|---|---|---|---|---|
Nuclide | Half-Life | |||||||||
22Na | 2.605 y | O | ||||||||
51Cr | 27.70 d | O | O | O | O | O | O | |||
54Mn | 312.2 d | O | O | O | O | O | O | O | O | O |
57Co | 270.9 d | O | O | O | O | O | O | |||
57Ni | 35.65 h | O | O | O | O | O | O | |||
58Co | 70.80 d | O | O | O | O | O | O | O | O | |
59Fe | 44.63 d | O | O | O | ||||||
60Co | 5.271 y | O | O | O | O | O | O | O | O | |
64Cu | 12.70 h | O | ||||||||
65Zn | 64.02 d | O | O | O | ||||||
82Br | 35.30 h | O | ||||||||
99Mo | 66.02 h | O | O | O | ||||||
122Sb | 2.700 d | O | O | |||||||
124Sb | 60.208 d | O | O | |||||||
181W | 121.2 d | O | O | O | O | O | ||||
184Re | 38.00 d | O | ||||||||
187W | 23.83 h | O | O | O | O | |||||
110mAg | 249.8 d | O | O | |||||||
196Au | 6.183 d | O | ||||||||
198Au | 64.80 d | O | O | O |
Component | Self-Disposal | On the Day of Disposal | Five Weeks after Disposal | |||
---|---|---|---|---|---|---|
Reference Nuclide | Criteria (Bq/g) | Surface Dose Rate (μSv/h) | Activity (Bq/g) | Surface Dose Rate (μSv/h) | Activity (Bq/g) | |
Target | 196Au | 0.1 | 26.856 | 1471.58 | 7.049 | 382.20 |
Target holder | 60Co | 0.1 | 0.949 | 8.77 | 0.57 | 4.85 |
Scattering foil | 60Co | 0.1 | 0.654 | 381.64 | 0.414 | 216.31 |
15 MV primary collimator | 60Co | 0.1 | 7.65 | 60.78 | 7.002 | 55.57 |
6 MV primary collimator | 60Co | 0.1 | 0.223 | 0.99 | 0.262 | 1.30 |
15 MV flattening filter | 60Co | 0.1 | 6.966 | 743.82 | 3.636 | 383.07 |
6 MV flattening filter | 60Co | 0.1 | 0.202 | 132.60 | 0.16 | 78.00 |
Ion chamber | 60Co | 0.1 | 0.208 | 7.73 | 0.118 | 1.29 |
Y jaw | 60Co | 0.1 | 0.208 | 3.40 | 0.118 | 1.42 |
MLC | 60Co | 0.1 | 0.19 | 9.96 | 0.134 | 5.24 |
Shielding block | 124Sb | 0.1 | 0.798 | 3.42 | 0.392 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, N.H.; Jang, Y.J.; Kim, K.B.; Yu, J.H.; Kim, J.; Kim, D.W.; Choi, S.H. Activity Evaluation Methodology for the Disposed Medical Linear Accelerators. Appl. Sci. 2023, 13, 528. https://doi.org/10.3390/app13010528
Kwon NH, Jang YJ, Kim KB, Yu JH, Kim J, Kim DW, Choi SH. Activity Evaluation Methodology for the Disposed Medical Linear Accelerators. Applied Sciences. 2023; 13(1):528. https://doi.org/10.3390/app13010528
Chicago/Turabian StyleKwon, Na Hye, Young Jae Jang, Kum Bae Kim, Ji Hyun Yu, Jinsung Kim, Dong Wook Kim, and Sang Hyoun Choi. 2023. "Activity Evaluation Methodology for the Disposed Medical Linear Accelerators" Applied Sciences 13, no. 1: 528. https://doi.org/10.3390/app13010528
APA StyleKwon, N. H., Jang, Y. J., Kim, K. B., Yu, J. H., Kim, J., Kim, D. W., & Choi, S. H. (2023). Activity Evaluation Methodology for the Disposed Medical Linear Accelerators. Applied Sciences, 13(1), 528. https://doi.org/10.3390/app13010528