Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Tissue-Mimicking Material
2.3. MRI Protocol
2.4. Texture Analysis
2.5. Dynamic Contrast Enhancement (DCE)
2.6. Statistical Analysis
3. Results
3.1. Pre-Clinical
3.2. Clinical Data
3.3. Clinical Characteristics of Prostate Cancer
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Li, C.; Mudd, A.; Gu, X. LncRNA PVT1 Predicts Prognosis and Regulates Tumor Growth in Prostate Cancer. Biosci. Biotechnol. Biochem. 2017, 81, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloom, J.; Gurram, S.; Siddiqui, M.; Pinsky, P.; Parnes, H.; Linehan, W.M.; Merino, M.; Choyke, P.L.; Shih, J.H.; Turkbey, B.; et al. MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N. Engl. J. Med. 2020, 382, 917–928. [Google Scholar] [CrossRef]
- Rouvière, O.; Puech, P.; Renard-penna, R.; Claudon, M.; Roy, C.; Mège-lechevallier, F.; Decaussin-petrucci, M. Use of Prostate Systematic and Targeted Biopsy on the Basis of Multiparametric MRI in Biopsy-Naive Patients (MRI-FIRST): A Prospective, Multicentre, Paired Diagnostic Study. Lancet Oncol. 2019, 20, 100–109. [Google Scholar] [CrossRef]
- Cuenod, C.A.; Balvay, D. Perfusion and Vascular Permeability: Basic Concepts and Measurement in DCE-CT and DCE-MRI. Diagn. Interv. Imaging 2013, 94, 1187–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, S.; Turkbey, B.; Muradyan, N.; Rajesh, A.; Cornud, F.; Haider, M.A.; Choyke, P.L.; Harisinghani, M. Overview of Dynamic Contrast-Enhanced MRI in Prostate Cancer Diagnosis and Management. Am. J. Roentgenol. 2012, 198, 1277–1288. [Google Scholar] [CrossRef]
- Score, G.; Song, W.; Bang, S.H.; Jeon, H.G.; Jeong, B.C.; Seo, S., II; Jeon, S.S.; Choi, H.Y.; Kim, C.K.; Lee, H.M. Role of PI-RADS Version 2 for Prediction of Upgrading in Biopsy-Proven Prostate Cancer With. Clin. Genitourin. Cancer 2018, 16, 281–287. [Google Scholar] [CrossRef]
- Chung, A.G.; Member, S.; Shafiee, M.J.; Member, S.; Kumar, D. Discovery Radiomics for Multi-Parametric MRI Prostate Cancer Detection. arXiv 2015, arXiv:1509.00111. [Google Scholar]
- Wibmer, A.; Hricak, H.; Gondo, T.; Matsumoto, K.; Moskowitz, C.; Fine, S.W.; Reuter, V.E.; Eastham, J.; Sala, E.; Vargas, H.A. Haralick Texture Analysis of Prostate MRI: Utility for Differentiating Non-Cancerous Prostate from Prostate Cancer and Differentiating Prostate Cancers with Different Gleason Scores. Eur. Radiol. 2015, 1, 2840–2850. [Google Scholar] [CrossRef]
- Just, N. Improving Tumour Heterogeneity MRI Assessment with Histograms. Br. J. Cancer 2014, 111, 2205–2213. [Google Scholar] [CrossRef] [Green Version]
- Incoronato, M.; Aiello, M.; Infante, T.; Cavaliere, C.; Grimaldi, A.M.; Mirabelli, P.; Monti, S.; Salvatore, M. Radiogenomic Analysis of Oncological Data: A Technical Survey. Int. J. Mol. Sci. 2017, 18, 805. [Google Scholar] [CrossRef] [Green Version]
- Hellerbach, A.; Schuster, V.; Jansen, A.; Sommer, J. MRI Phantoms—Are There Alternatives to Agar? PLoS ONE 2013, 8, e70343. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, C.R.; Smith, T.B.; Rooney, W.D.; Guimaraes, A.R. Multi—Parametric T 2 * Magnetic Resonance Fingerprinting Using Variable Echo Times. NMR Biomed. 2018, 31, e3951. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Huang, Z.; Varghese, T.; Nabi, G. Tissue Mimicking Materials for the Detection of Prostate Cancer Using Shear Wave Elastography: A Validation Study. Med. Phys. 2013, 40, 22903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padhani, A.R.; Weinreb, J.; Rosenkrantz, A.B.; Villeirs, G.; Turkbey, B.; Barentsz, J.; Catto, J. Prostate Imaging-Reporting and Data System Steering Committee: PI-RADS v2 Status Update and Future Directions. Eur. Urol. 2018, 75, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connor, J.P.B.O.; Tofts, P.S.; Miles, K.A.; Thompson, G.; Jackson, A. Dynamic Contrast-Enhanced Imaging Techniques: CT and MRI. Br. J. Radiol. 2011, 84, S112–S120. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.J. Principal Component Analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant Analysis of Principal Components: A New Method for the Analysis of Genetically Structured Populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Abdi, L.; Ghodsi, A. Discriminant Component Analysis via Distance Correlation Maximization. Pattern Recognit. 2020, 98, 107052. [Google Scholar] [CrossRef]
- Aike, H.A.I. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- McFadden, D. R2.Pdf, 474th ed.; Yale University: New Haven, CO, USA, 1977. [Google Scholar]
- Coil, E.P.; Baldisserotto, M.; Neto, E.J.D.; Carvalhal, G.; De Toledo, A.F.; De Almeida, C.M.; Cairoli, C.E.D.; Silva, D.D.O.; Carvalhal, E.; Paganin, R.P.; et al. Validation of PI-RADS v. 2 for Prostate Cancer Diagnosis with MRI at 3T Using. J. Magn. Reson. Imaging 2016, 44, 1354–1359. [Google Scholar] [CrossRef]
- Pi-rads, R.M.; Yang, S.; Wei, C.; Wu, J.; Li, X.; Zhao, W. Prostate Cancer Differentiation and Aggressiveness: Assessment with a Radiomic-Based Model vs. PI-RADS v2. J. Magn. Reson. Imaging. 2019, 49, 875–884. [Google Scholar] [CrossRef]
- Berman, R.M.; Brown, A.M.; Chang, S.D.; Sankineni, S.; Kadakia, M.; Wood, B.J.; Pinto, P.A.; Choyke, P.L.; Turkbey, B. DCE MRI of Prostate Cancer. Abdom. Radiol. 2016, 41, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Corino, V.D.A.; Mainardi, L.T. Assessment of the Effect of Intensity Standardization on the Reliability of T1-Weighted MRI Radiomic Features: Experiment on a Virtual Phantom. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 413–416. [Google Scholar]
- Xue, C.; Yuan, J.; Lo, G.G.; Chang, A.T.Y.; Poon, D.M.C.; Wong, O.L.; Zhou, Y.; Chu, W.C.W. Radiomics Feature Reliability Assessed by Intraclass Correlation Coefficient: A Systematic Review. Quant. Imaging Med. Surg. 2021, 11, 4431. [Google Scholar] [CrossRef] [PubMed]
- Kuess, P.; Andrzejewski, P.; Nilsson, D.; Georg, P.; Knoth, J.; Susani, M.; Trygg, J.; Helbich, T.H.; Polanec, S.H.; Georg, D.; et al. Association between Pathology and Texture Features of Multi Parametric MRI of the Prostate Association between Pathology and Texture Features of Multi Parametric MRI of the Prostate. Phys. Med. Biol. 2017, 62, 7833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Cheng, J.; Guo, D.J.; He, X.J.; Luo, Y.D.; Zeng, Y.; Li, C.M. Prediction of Prostate Cancer Aggressiveness with a Combination of Radiomics and Machine Learning-Based Analysis of Dynamic Contrast-Enhanced MRI. Clin. Radiol. 2019, 74, 896-e1. [Google Scholar] [CrossRef] [PubMed]
T1WI | High Resolution T2WI | DWI | DCE | ||||
---|---|---|---|---|---|---|---|
Axial | Sagittal | Axial | Coronal | DWI | DWI High b-Value | Dyn Gd-MRI | |
Sequence | 2DTSE | 2DTSE | 2DTSE | 2DTSE | 2DEPI | 2DEPI | 3D VIBE |
TR (ms) | 650 | 6000 | 4000 | 5000 | 3300 | 3300 | 4.76 |
TE (ms) | 11 | 102 | 100 | 100 | 95 | 95 | 2.45 |
Flip angle (°) | 150 | 140 | 150 | 150 | 10 | ||
Slice thickness (mm) | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Slice gap (mm) | 0.6 | 0.6 | 0.6 | 0.6 | 0 | 0 | 0.6 |
Resolution (pixels) | 320 | 320 | 320 | 320 | 192 | 192 | 192 |
FOV (mm) | 200 | 200 | 200 | 200 | 280 | 280 | 280 |
b-values (s/mm2) | 50, 100, 500, 1000 | 2000 | |||||
Temporal resolution (s) | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshomrani, F.; Alsaedi, B.S.O.; Wei, C.; Szewczyk-Bieda, M.; Gandy, S.; Wilson, J.; Huang, Z.; Nabi, G. Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms. Appl. Sci. 2023, 13, 576. https://doi.org/10.3390/app13010576
Alshomrani F, Alsaedi BSO, Wei C, Szewczyk-Bieda M, Gandy S, Wilson J, Huang Z, Nabi G. Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms. Applied Sciences. 2023; 13(1):576. https://doi.org/10.3390/app13010576
Chicago/Turabian StyleAlshomrani, Faisal, Basim S. O. Alsaedi, Cheng Wei, Magdalena Szewczyk-Bieda, Stephen Gandy, Jennifer Wilson, Zhihong Huang, and Ghulam Nabi. 2023. "Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms" Applied Sciences 13, no. 1: 576. https://doi.org/10.3390/app13010576
APA StyleAlshomrani, F., Alsaedi, B. S. O., Wei, C., Szewczyk-Bieda, M., Gandy, S., Wilson, J., Huang, Z., & Nabi, G. (2023). Radiomics Approach to the Detection of Prostate Cancer Using Multiparametric MRI: A Validation Study Using Prostate-Cancer-Tissue-Mimicking Phantoms. Applied Sciences, 13(1), 576. https://doi.org/10.3390/app13010576