Resistivity and Density Structure of Limboto Lake—Pentadio, Gorontalo, Indonesia Based on Magnetotelluric and Gravity Data
Abstract
:1. Introduction
2. Geological Setting
Fault System of Limboto Lake—Pentadio
3. MT Method
3.1. MT Data Acquisition and Processing
3.2. 3D MT Inversion
4. Gravity Method
4.1. Gravity Data Acquisition and Reduction
4.1.1. The Regional Separation: Polynomial Regression
4.1.2. Gradient Analysis
5. Results
5.1. 3D Resistivity Structure of Limboto Lake, Pentadio
5.2. Gravity Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massinai, M.A.; Harimei, B.; Agustiawati, A.; Massinai, M.F.I. Seismicity Analysis Sulawesi North Arm Based on B-Values. J. Phys. Conf. Ser. 2019, 1341, 082032. [Google Scholar] [CrossRef] [Green Version]
- Cummins, P.R.; Meilano, I. Geohazards in Indonesia: Earth Science for Disaster Risk Reduction-Introduction. Geol. Soc. Spec. Publ. 2017, 441, 1–7. [Google Scholar] [CrossRef]
- Putra, S.S.; Hassan, C.; Djudi; Suryatmojo, H. Reservoir Saboworks Solutions in Limboto Lake Sedimentations, Northern Sulawesi, Indonesia. Procedia Environ. Sci. 2013, 17, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Andri Kurniawan, I.; Sugawara, H.; Sakakibara, M.; Arifin Indriati, Y.; Suly Eraku, S. The Potential of Gorontalo Province as Global Geopark. IOP Conf. Ser. Earth Environ. Sci. 2020, 536, 012004. [Google Scholar] [CrossRef]
- Manyoe, I.N.; Arifin, Y.I.; Napu, S.S.S.; Suma, M.D. Assessment of the Values of Science, Education, Tourism and the Risk Degradation of Pentadio Geothermal Areas to Developing Geotourism in the Limboto Lake Plain, Gorontalo. J. Phys. Conf. Ser. 2021, 1968, 012047. [Google Scholar] [CrossRef]
- Heise, W.; Caldwell, T.G.; Bibby, H.M.; Bennie, S.L. Three-Dimensional Electrical Resistivity Image of Magma beneath an Active Continental Rift, Taupo Volcanic Zone, New Zealand. Geophys. Res. Lett. 2010, 37, 2–6. [Google Scholar] [CrossRef]
- Aizawa, K.; Koyama, T.; Hase, H.; Uyeshima, M.; Kanda, W.; Utsugi, M.; Yoshimura, R.; Yamaya, Y.; Hashimoto, T.; Yamazaki, K.; et al. Three-Dimensional Resistivity Structure and Magma Plumbing System of the Kirishima Volcanoes as Inferred from Broadband Magnetotelluric Data. J. Geophys. Res. Solid Earth 2014, 119, 198–215. [Google Scholar] [CrossRef]
- Ogawa, Y.; Ichiki, M.; Kanda, W.; Mishina, M.; Asamori, K. Three-Dimensional Magnetotelluric Imaging of Crustal Fluids and Seismicity around Naruko Volcano, NE Japan. Earth Planets Space 2014, 66, 158. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, E.A.; Caldwell, T.G.; Bannister, S.; Soengkono, S.; Bennie, S.L.; Hill, G.J.; Heise, W. Using Array MT Data to Image the Crustal Resistivity Structure of the Southeastern Taupo Volcanic Zone, New Zealand. J. Volcanol. Geotherm. Res. 2015, 305, 63–75. [Google Scholar] [CrossRef]
- Chouteau, M.; Zhang, P.; Dion, D.J.; Giroux, B.; Morin, R.; Krivochieva, S. Delineating Mineralization and Imaging the Regional Structure with Magnetotellurics in the Region of Chibougamau (Canada). Geophysics 1997, 62, 730–748. [Google Scholar] [CrossRef]
- Aizawa, K.; Ogawa, Y.; Ishido, T. Groundwater Flow and Hydrothermal Systems within Volcanic Edifices: Delineation by Electric Self-Potential and Magnetotellurics. J. Geophys. Res. Solid Earth 2009, 114, B01208. [Google Scholar] [CrossRef]
- Zhang, L.; Unsworth, M.; Jin, S.; Wei, W.; Ye, G.; Jones, A.G.; Jing, J.; Dong, H.; Xie, C.; Le Pape, F.; et al. Structure of the Central Altyn Tagh Fault Revealed by Magnetotelluric Data: New Insights into the Structure of the Northern Margin of the India-Asia Collision. Earth Planet. Sci. Lett. 2015, 415, 67–79. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Newman, G.A. Improved Workflow for 3D Inverse Modeling of Magnetotelluric Data: Examples from Five Geothermal Systems. Geothermics 2015, 53, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Rosenkjaer, G.K.; Gasperikova, E.; Newman, G.A.; Arnason, K.; Lindsey, N.J. Comparison of 3D MT Inversions for Geothermal Exploration: Case Studies for Krafla and Hengill Geothermal Systems in Iceland. Geothermics 2015, 57, 258–274. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, E.A.; Unsworth, M.J.; Chiang, C.W.; Chen, C.S.; Chen, C.C.; Wu, F.T.; Türkoǧlu, E.; Hsu, H.L.; Hill, G.J. Magnetotelluric Imaging beneath the Taiwan Orogen: An Arc-Continent Collision. J. Geophys. Res. Solid Earth 2012, 117, B01402. [Google Scholar] [CrossRef]
- Boonchaisuk, S.; Siripunvaraporn, W.; Ogawa, Y. Evidence for Middle Triassic to Miocene Dual Subduction Zones beneath the Shan-Thai Terrane, Western Thailand from Magnetotelluric Data. Gondwana Res. 2013, 23, 1607–1616. [Google Scholar] [CrossRef]
- Khoza, T.D.; Jones, A.G.; Muller, M.R.; Evans, R.L.; Miensopust, M.P.; Webb, S.J. Lithospheric Structure of an Archean Craton and Adjacent Mobile Belt Revealed from 2-D and 3-D Inversion of Magnetotelluric Data: Example from Southern Congo Craton in Northern Namibia. J. Geophys. Res. Solid Earth 2013, 118, 4378–4397. [Google Scholar] [CrossRef] [Green Version]
- Abdallah, S.; Utsugi, M.; Aizawa, K.; Uyeshima, M.; Kanda, W.; Koyama, T.; Shiotani, T. Three-Dimensional Electrical Resistivity Structure of the Kuju Volcanic Group, Central Kyushu, Japan Revealed by Magnetotelluric Survey Data. J. Volcanol. Geotherm. Res. 2020, 400, 106898. [Google Scholar] [CrossRef]
- Cumming, W. Geothermal Resource Conceptual Models Using Surface Exploration Data. In Proceedings of the Twenty-First Workshop on Geothermal Reservoir Engineering, Standfor University, Standford, CA, USA, 9–11 February 2009. SGP–TR–187. [Google Scholar]
- Pellerin, L.; Johnston, J.M.; Hohmann, G.W. A Numerical Evaluation of Electromagnetic Methods in Geothermal Exploration. Geophysics 1996, 61, 121–130. [Google Scholar] [CrossRef]
- Roden, J.; Abdelsalam, M.G.; Atekwana, E.; El-Qady, G.; Tarabees, E.A. Structural Influence on the Evolution of the Pre-Eonile Drainage System of Southern Egypt: Insights from Magnetotelluric and Gravity Data. J. Afr. Earth Sci. 2011, 61, 358–368. [Google Scholar] [CrossRef]
- Kanda, I.; Fujimitsu, Y.; Nishijima, J. Geological Structures Controlling the Placement and Geometry of Heat Sources within the Menengai Geothermal Field, Kenya as Evidenced by Gravity Study. Geothermics 2019, 79, 67–81. [Google Scholar] [CrossRef]
- Maithya, J.; Fujimitsu, Y.; Nishijima, J. Analysis of Gravity Data to Delineate Structural Features Controlling the Eburru Geothermal System in Kenya. Geothermics 2020, 85, 101795. [Google Scholar] [CrossRef]
- Mulugeta, B.D.; Fujimitsu, Y.; Nishijima, J.; Saibi, H. Interpretation of Gravity Data to Delineate the Subsurface Structures and Reservoir Geometry of the Aluto–Langano Geothermal Field, Ethiopia. Geothermics 2021, 94, 102093. [Google Scholar] [CrossRef]
- Hamilton, W. Tectonics of the Indonesian Region. Bull. Geol. Soc. Malays. 1973, 6, 3–10. [Google Scholar] [CrossRef]
- Helmers, H. Sulawesi Blueschists and Subduction Along The Sunda Continent, An Alternative View. In Proceedings of the Silver Jubilee Symposium on the Dynamics of Subduction and Its Products, Yogyakarta, Indonesia, 17–19 September 1991; pp. 220–223. [Google Scholar]
- Simandjuntak, T.O.; Mubroto, M. Neogene Tethyan Type Convergence in Eastern Sulawesi. In Proceedings of the Silver Jubilee Symposium on the Dynamics of Subduction and Its Products, Yogyakarta, Indonesia, 17–19 September 1991; pp. 274–277. [Google Scholar]
- Sukamto, R. Peta Geologi Tinjau Daerah Palu Sulawesi Tengah Reconnaissance Geologic Map of Palu Area Central Sulawesi; Geological Survey of Indonesia: Bandung, Indonesia, 1973.
- Kavalieris, I.; van Leeuwen, T.M.; Wilson, M. Geological Setting and Styles of Mineralization, North Arm of Sulawesi, Indonesia. J. Southeast Asian Earth Sci. 1992, 7, 113–129. [Google Scholar] [CrossRef]
- Bachri, S. Structural Pattern and Stress System Evolution During Neogene-Pleistocene Times in the Central Part of the North Arm of Sulawesi. J. Geol. Dan Sumberd. Miner. 2011, 21, 127–135. [Google Scholar]
- Sompotan, A.F. Struktur Geologi Sulawesi; Perpustakaan Sains Kebumian Institut Teknologi: Bandung, Indonesia, 2012. [Google Scholar]
- Apandi, T.; Bachri, S. Geological Map of The Kotamubagu Sheet, Sulawesi. Pus. Penelit. dan Pengemb. Geol. 1997. [Google Scholar]
- Lowder, G.G.; Dow, J.A.S. Geology and Exploration of Porphyry Copper Deposits Indonesia. Econ. Geol. 1978, 73, 628–644. [Google Scholar] [CrossRef]
- Perelló, J.A. Geology, Porphyry CuAu, and Epithermal CuAuAg Mineralization of the Tombulilato District, North Sulawesi, Indonesia. J. Geochem. Explor. 1994, 50, 221–256. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault Zone Architecture and Permeability Structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Cagniard, L. Basic Theory of the Magneto-Telluric Method of Geophysical Prospecting. Geophysics 1953, 18, 605–635. [Google Scholar] [CrossRef]
- Tikhonov, A. On Determining Electrical Characteristics of the Deep Layers of the Earth’s Crust. Doklady 1950, 73, 295–297. [Google Scholar]
- Phoenix Geophysics. V5 System 2000 MTU/MTU-A User Guide Version 2.0 D; Phoenix Geophysics: Scarborough, ON, Canada, 2010. [Google Scholar]
- Weidelt, P. The Inverse Problem of Geomagnetic Induction. J. Geophys. 1972, 38, 257–289. [Google Scholar] [CrossRef]
- Groom, R.W.; Bailey, R.C. Decomposition of Magnetotelluric Impedance Tensors in the Presence of Local Three-Dimensional Galvanic Distortion. J. Geophys. Res. 1989, 94, 1913–1925. [Google Scholar] [CrossRef] [Green Version]
- Platz, A.; Weckmann, U.; Pek, J.; Kováčiková, S.; Klanica, R.; Mair, J.; Aleid, B. 3D Imaging of the Subsurface Electrical Resistivity Structure in West Bohemia/Upper Palatinate Covering Mofettes and Quaternary Volcanic Structures by Using Magnetotellurics. Tectonophysics 2022, 833, 229353. [Google Scholar] [CrossRef]
- Triahadini, A.; Aizawa, K.; Teguri, Y.; Koyama, T.; Tsukamoto, K.; Muramatsu, D.; Chiba, K.; Uyeshima, M. Magnetotelluric Transect of Unzen Graben, Japan: Conductors Associated with Normal Faults. Earth Planets Space 2019, 71, 28. [Google Scholar] [CrossRef]
- Siripunvaraporn, W.; Egbert, G. WSINV3DMT: Vertical Magnetic Field Transfer Function Inversion and Parallel Implementation. Phys. Earth Planet. Inter. 2009, 173, 317–329. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.; Zhang, S.; Xin, H.; Li, Z.; Tian, W.; Bao, F.; Cheng, Z.; Jia, X.; Fu, L. Magma Recharging beneath the Weishan Volcano of the Intraplate Wudalianchi Volcanic Field, Northeast China, Implied from 3-D Magnetotelluric Imaging. Geology 2020, 48, 913–918. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, D.; Xu, Y.; Chen, C. 3D Magnetotelluric Imaging of the Middle-Upper Crustal Conduit System beneath the Lei-Hu-Ling Volcanic Area of Northern Hainan Island, China. J. Volcanol. Geotherm. Res. 2019, 371, 220–228. [Google Scholar] [CrossRef]
- Miensopust, M.P. Application of 3-D Electromagnetic Inversion in Practice: Challenges, Pitfalls and Solution Approaches. Surv. Geophys. 2017, 38, 869–933. [Google Scholar] [CrossRef]
- Yang, B.; Lin, W.; Hu, X.; Fang, H.; Qiu, G.; Wang, G. The Magma System beneath Changbaishan-Tianchi Volcano, China/North Korea: Constraints from Three-Dimensional Magnetotelluric Imaging. J. Volcanol. Geotherm. Res. 2021, 419, 107385. [Google Scholar] [CrossRef]
- Yamamoto, A. Estimating the Optimum Reduction Density for Gravity Anomaly: A Theoretical Overview. J. Hokkaido Univ. Fac. Sci. Ser. VII Geophys. 1999, 11, 577–599. [Google Scholar]
- Parasnis, D.S. A Study of Rock Density in the English Midlands. Mon. Not. R. Astron. Soc. Geophys. Suppl. 1951, 6, 252–271. [Google Scholar] [CrossRef] [Green Version]
- Lowrie, W. Fundamentals of Geophysics, Second Edition; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521859028. [Google Scholar]
- Saibi, H.; Nishijima, J.; Ehara, S. Processing and Interpretation of Gravity Data for the Shimabara Peninsula Area, Southwestern Japan. Mem. Fac. Eng. Kyushu Univ. 2006, 66, 129–146. [Google Scholar]
- Elkins, T.A. The Second Derivative Method of Gravity Interpretation. Geophysics 1951, 16, 29–50. [Google Scholar] [CrossRef]
- Nguyen, F.; Garambois, S.; Jongmans, D.; Pirard, E.; Loke, M.H. Image Processing of 2D Resistivity Data for Imaging Faults. J. Appl. Geophys. 2005, 57, 260–277. [Google Scholar] [CrossRef]
- Cheng, P.H.; Lin, A.T.S.; Ger, Y.I.; Chen, K.H. Resistivity Structures of the Chelungpu Fault in the Taichung Area, Taiwan. Terr. Atmos. Ocean. Sci. 2006, 17, 547–561. [Google Scholar] [CrossRef] [Green Version]
- Fazzito, S.Y.; Rapalini, A.E.; Cortés, J.M.; Terrizzano, C.M. Characterization of Quaternary Faults by Electric Resistivity Tomography in the Andean Precordillera of Western Argentina. J. S. Am. Earth Sci. 2009, 28, 217–228. [Google Scholar] [CrossRef]
- Saetang, K.; Yordkayhun, S.; Wattanasen, K. Detection of Hidden Faults beneath Khlong Marui Fault Zone Using Seismic Reflection and 2-D Electrical Imaging. ScienceAsia 2014, 40, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Seminsky, K.Z.; Zaripov, R.M.; Olenchenko, V.V. Interpretation of Shallow Electrical Resistivity Images of Faults: Tectonophysical Approach. Russ. Geol. Geophys. 2016, 57, 1349–1358. [Google Scholar] [CrossRef]
- Nishijima, J.; Naritomi, K. Interpretation of Gravity Data to Delineate Underground Structure in the Beppu Geothermal Field, Central Kyushu, Japan. J. Hydrol. Reg. Stud. 2017, 11, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Trček, B.; Zojer, H. Groundwater Hydrology of Springs; Elsevier: Amsterdam, The Netherlands, 2010; pp. 87–127. ISBN 9781856175029. [Google Scholar]
- Mitjanas, G.; Ledo, J.; Queralt, P.; Bellmunt, F.; Marcuello, A.; Benjumea, B.; Figueras, S. Geothermics Integrated Seismic Ambient Noise, Magnetotellurics and Gravity Data for the 2D Interpretation of the Vall‘Es Basin Structure in the Geothermal System Of. Geothermics 2021, 93, 102067. [Google Scholar] [CrossRef]
- Schön, J.H. Physical Properties of Rocks. Dev. Pet. Sci. 2015, 65, 512. [Google Scholar]
- Saibi, H.; Khosravi, S.; Abera, B.; Smirnov, M.; Kebede, Y.; Fowler, A. Heliyon Magnetotelluric Data Analysis Using 2D Inversion: A Case Study from Al-Mubazzarah Geothermal Area (AMGA), Al-Ain, United Arab Emirates. Heliyon 2021, 7, e07440. [Google Scholar] [CrossRef] [PubMed]
- Hacıoglu, O.; Basokur, A.T.; Diner, C. Geothermics Geothermal Potential of the Eastern End of the Gediz Basin, Western Anatolia, Turkey Revealed by Three-Dimensional Inversion of Magnetotelluric Data. Geothermics 2021, 91, 102040. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Susilawati, A.; Niode, M.; Surmayadi, M.; Pratomo, P.M.; Nurhasan; Mustopa, E.J.; Sutarno, D.; Srigutomo, W. Resistivity and Density Structure of Limboto Lake—Pentadio, Gorontalo, Indonesia Based on Magnetotelluric and Gravity Data. Appl. Sci. 2023, 13, 644. https://doi.org/10.3390/app13010644
Susilawati A, Niode M, Surmayadi M, Pratomo PM, Nurhasan, Mustopa EJ, Sutarno D, Srigutomo W. Resistivity and Density Structure of Limboto Lake—Pentadio, Gorontalo, Indonesia Based on Magnetotelluric and Gravity Data. Applied Sciences. 2023; 13(1):644. https://doi.org/10.3390/app13010644
Chicago/Turabian StyleSusilawati, Anggie, Mochtar Niode, Mamay Surmayadi, Prihandhanu Mukti Pratomo, Nurhasan, Enjang Jaenal Mustopa, Doddy Sutarno, and Wahyu Srigutomo. 2023. "Resistivity and Density Structure of Limboto Lake—Pentadio, Gorontalo, Indonesia Based on Magnetotelluric and Gravity Data" Applied Sciences 13, no. 1: 644. https://doi.org/10.3390/app13010644
APA StyleSusilawati, A., Niode, M., Surmayadi, M., Pratomo, P. M., Nurhasan, Mustopa, E. J., Sutarno, D., & Srigutomo, W. (2023). Resistivity and Density Structure of Limboto Lake—Pentadio, Gorontalo, Indonesia Based on Magnetotelluric and Gravity Data. Applied Sciences, 13(1), 644. https://doi.org/10.3390/app13010644