Preliminary Study for Smoke Color Classification of Combustibles Using the Distribution of Light Scattering by Smoke Particles
Abstract
:1. Introduction
2. Experimental Approaches
2.1. Experimental Method and Procedure
2.2. Experimental Condition
3. Results and Discussion
3.1. Primary Processing Scattering Light Distribution According to Smoke Particle Color
3.2. Post-Processing: Light Scattering Distribution According to Smoke Particle Color, with Criteria Applied
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Lee, C.H.; Kim, S.K.; Kong, H.S. A Study about False Alarm of Automatic Fire Detection System. J. Korea Saf. Manag. Sci. 2011, 13, 41–49. [Google Scholar] [CrossRef]
- Cleary, T. Residential Nuisance Source Characteristics for Smoke Alarm Testing. To Be Determined. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861318 (accessed on 30 November 2022).
- Liu, Z.; Kim, A.K. Review of Recent Developments in Fire Detection Technologies. J. Fire Prot. Eng. 2003, 13, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Reimann, P.; Schütze, A. Sensor arrays, virtual multisensors, data fusion, and gas sensor data evaluation. In Gas Sensing Fundamentals; Springer Series on Chemical Sensors and Biosensors; Kohl, C.D., Wagner, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 15, pp. 67–107. [Google Scholar] [CrossRef]
- Siebel, R. Test of Fire Detection Algorithms Using Artificially Generated Events. Fire Saf. J. 2006, 41, 258–265. [Google Scholar] [CrossRef]
- Saeed, F.; Paul, A.; Hong, W.H.; Seo, H.C. Machine learning based approach for multimedia surveillance during fire emergencies. Multimed. Tools Appl. 2020, 79, 16201–16217. [Google Scholar] [CrossRef]
- Panpaeng, S.; Phanpeang, P.; Metharak, E. Cigarette smoke detectors for non-smoking areas in the building. In Proceedings of the 2018 22nd International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 21–24 November 2018. [Google Scholar] [CrossRef]
- National Standards of the Republic of Korea. Detailed Inspection Regulations for Model Approval & Inspection Technical Standards for Fire Detectors; Korea Fire Institute (KFI), National Fire Agency: Sejong-si, Republic of Korea, 2019; pp. 31–34.
- Jang, H.Y.; Hwang, C.H. Obscuration Threshold Database Construction of Smoke Detectors for Various Combustibles. Sensors 2020, 20, 6272. [Google Scholar] [CrossRef]
- Krishnan, S.S.; Lin, K.C.; Faeth, G.M. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. J. Heat Transf. 2001, 123, 331–339. [Google Scholar] [CrossRef]
- Singh, S.; Fiddler, M.N.; Bililign, S. Measurement of Side-dependent Single Scattering Albedo of Fresh Biomass Burning Aerosols using the Extinction-Minus-scattering Technique with a Combination of Cavity Ring-down Spectroscopy and Nephelometry. Atmos. Chem. Phys. 2016, 16, 13491–13507. [Google Scholar] [CrossRef] [Green Version]
- Jee, S.W. Analysis of the Response Time of a Photoelectric Spot-Type Smoke Detector Depending. J. Korean Inst. Illum. Electr. Install. Eng. 2013, 27, 89–94. [Google Scholar] [CrossRef]
- Jee, S.W. A Study on the Fire Sources Analysis Using the Optical Characteristics of Smoke Particles and Neural Networks. Korean Inst. Fire Sci. Eng. 2014, 28, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Kim, D.K.; Choi, S.Y.; Lee, Y.S. Development of Flame and Smoke Detection for Early Fire Recognition. J. Korean Inst. Fire Sci. Eng. 2008, 22, 27–32. [Google Scholar]
- Lee, H.S.; Kim, S.K. A Study on Response Characteristics of Photoelectric Type Smoke Detector Chamber Due to Dust Color. Korean Inst. Fire Sci. Eng. 2017, 31, 44–52. [Google Scholar] [CrossRef]
- Miller, J.-T. Analyzing Photo-Electric Smoke Detector Response Based on Aspirated Smoke Detector Obscuration. Master’s Thesis, University of Maryland, College Park, MD, USA, 2010. Available online: http://hdl.handle.net/1903/10455 (accessed on 22 March 2018).
- Deng, T.; Wang, S.; Xiao, X.; Zhu, M. Eliminating the effects of refractive indices for both white smokes and black smokes in optical fire detector. Sens. Actuators B Chem. 2017, 253, 187–195. [Google Scholar] [CrossRef]
- Wang, W.Q.; Pan, G.; Liu, X.L.; Wang, Y.Y.; Liu, Y.B.; Liu, B.; Jiang, L. Multi-angle Scattering Characteristic of test Fire Smoke and Typical Interference Aerosol. Procedia Eng. 2011, 11, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Zhang, H.; Wan, Y.; Zhang, Y.M.; Qiao, L.F. Characteristics of light scattering by smoke particles based on spheroid models. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 72–82. [Google Scholar] [CrossRef]
- Keller, A.; Loepfe, M.; Nebiker, P.; Pleisch, R.; Burtscher, H. On-line determination of the optical properties of particles pro-duced by test fires. Fire Saf. J. 2006, 41, 266–273. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, X.; Deng, T.; Chen, A.; Zhu, M. A Sauter mean diameter sensor for fire smoke detection. Sens. Actuators B Chem. 2019, 281, 920–932. [Google Scholar] [CrossRef]
- Weinert, D.W.; Cleary, T.; Mulholland, G.W.; Beever, P.F. Light Scattering Characteristics and Size Distribution of Smoke and Nuisance Aerosols. In Proceedings of the 7th International Symposium on Fire Safety Science, Gaithersburg, MD, USA, 16–21 June 2003; pp. 209–220. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=861092 (accessed on 10 August 2022). [CrossRef] [Green Version]
- Weinert, D.; Cleary, T.; Mulholland, G. Size Distribution and Light Scattering Properties of Test Smokes (NIST SP 965); Special Publication (NIST SP); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001. Available online: https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912274 (accessed on 20 September 2022). [CrossRef]
- Deng, T.; Zeng, J.; Wang, S.; Uan, S.; Chen, A. An optical fire detector with enhanced response sensitivities for black smokes based on the polarized light scattering. Meas. Sci. Technol. 2019, 30, 115203. [Google Scholar] [CrossRef]
- Jun, L.S.; Peng, L. Vertical Two-Way Dispersion Smoke Sensing Detector Labyrinth. CN Patent 1987426A, 23 December 2005. [Google Scholar]
- James, R.; Louis, D.; Jayanthi, P. Smoke Chamber. U.S. Patent 6778091, 17 August 2004. [Google Scholar]
- Butler, K.M.; Mulholland, G.W. Generation and Transport of Smoke Components. Fire Technol. 2004, 40, 149–176. [Google Scholar] [CrossRef]
- Léonard, S.; Mulholland, G.W.; Puri, R.; Santoro, R.J. Generation of CO and Smoke During Underventilated Combustion. Combust. Flame 1994, 98, 20–34. [Google Scholar] [CrossRef]
- Mulholland, G.W.; Johnsson, E.L.; Fernandez, M.G.; Shear, D.A. Design and testing of new smoke concentration meter. Repr. Fire Mater. 2000, 24, 231–243. [Google Scholar] [CrossRef]
- Kim, B.J.; Cho, J.H.; Hwang, C.H.; Park, S.H. A study on the development of a low-cost device for measuring the optical smoke density. Korean Inst. Fire Sci. Eng. 2015, 29, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Hulst, H.C. Light Scattering by Small Particles; John Wiley and Sons: New York, NY, USA; Chapman and Hall: London, UK, 1981; p. 470. [Google Scholar] [CrossRef]
- Holland, A.C.; Alfred, C.; Gagne, G. The Scattering of Polarized Light by Polydisperse Systems of Irregular Particles. Appl. Opt. 1970, 9, 1113–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costea, A.; Schiopu, P. New design and improved performance for smoke detector. In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Lasi, Romania, 28–30 June 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Zheng, R.; Cheng, Y.; Zhang, H. A Study on Scattering Characterization of Water Steam Aerosols for Smoke Detector. In Proceedings of the 2017 Suppression, Detection, and Signaling Research and Applications Conference (SUPDET 2017) Was Jointly Organized with the 16th International Conference on Fire Detection (AUBE ‘17), College Park, MD, USA, 12–14 September 2017. [Google Scholar]
- Howell, J.R.; Mengüç, M.P.; Daun, K.; Siegel, R. Thermal Radiation Heat Transfer, 7th ed.; CRC Press: Boca Raton, FL, USA, 2020; Chapter 15; pp. 682–740. [Google Scholar] [CrossRef]
- Jobert, G.; Barritault, P.; Fournier, M.; Boutami, S.; Jobert, D.; Marchant, A.; Michelot, J.; Monsinjon, P.; Lienhard, P.; Nicoletti, S. Miniature particulate matter counter and analyzer based on lens-free imaging of light scattering signatures with a holed image sensor. Sens. Actuators Rep. 2020, 2, 100010. [Google Scholar] [CrossRef]
No. | Analysis Criterion | |
---|---|---|
I | 15°~75°) | |
II | 15°~75°) | |
III | 15°~165°) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.-Y.; Hwang, C.-H. Preliminary Study for Smoke Color Classification of Combustibles Using the Distribution of Light Scattering by Smoke Particles. Appl. Sci. 2023, 13, 669. https://doi.org/10.3390/app13010669
Jang H-Y, Hwang C-H. Preliminary Study for Smoke Color Classification of Combustibles Using the Distribution of Light Scattering by Smoke Particles. Applied Sciences. 2023; 13(1):669. https://doi.org/10.3390/app13010669
Chicago/Turabian StyleJang, Hyo-Yeon, and Cheol-Hong Hwang. 2023. "Preliminary Study for Smoke Color Classification of Combustibles Using the Distribution of Light Scattering by Smoke Particles" Applied Sciences 13, no. 1: 669. https://doi.org/10.3390/app13010669
APA StyleJang, H. -Y., & Hwang, C. -H. (2023). Preliminary Study for Smoke Color Classification of Combustibles Using the Distribution of Light Scattering by Smoke Particles. Applied Sciences, 13(1), 669. https://doi.org/10.3390/app13010669