Synthesis and Printing Features of a Hierarchical Nanocomposite Based on Nickel–Cobalt LDH and Carbonate Hydroxide Hydrate as a Supercapacitor Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanopowder Preparation
2.3. Microplotter Printing of Electrode Film
2.4. Instrumentation
3. Results and Discussion
3.1. Characterization of the Prepared Nanopowder
3.2. Characterization of the Printed (M(CO3)0.5(OH)·0.11H2O)/(NiCo-LDH) Film
3.3. Electrochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, C.; Wang, T.; Zhao, Z.; Ni, Y. Recent progress in the development of smart supercapacitors. SmartMat 2023, 4, e1158. [Google Scholar] [CrossRef]
- Oyedotun, K.O.; Ighalo, J.O.; Amaku, J.F.; Olisah, C.; Adeola, A.O.; Iwuozor, K.O.; Akpomie, K.G.; Conradie, J.; Adegoke, K.A. Advances in Supercapacitor Development: Materials, Processes, and Applications. J. Electron. Mater. 2023, 52, 96–129. [Google Scholar] [CrossRef]
- Hu, X.; Zheng, W.; Wu, M.; He, Q.; Zhan, F.; Chen, L. Ternary layered double hydroxide cathode materials for electrochemical energy storage: A review and perspective. Sustain. Energy Fuels 2022, 6, 4551–4581. [Google Scholar] [CrossRef]
- Liao, F.; Zhao, X.; Yang, G.; Cheng, Q.; Mao, L.; Chen, L. Recent advances on two-dimensional NiFe-LDHs and their composites for electrochemical energy conversion and storage. J. Alloys Compd. 2021, 872, 159649. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Choi, C.; Lee, J.M.; Kim, S.H.; Kim, S.J.; Di, J.; Baughman, R.H. Twistable and Stretchable Sandwich Structured Fiber for Wearable Sensors and Supercapacitors. Nano Lett. 2016, 16, 7677–7684. [Google Scholar] [CrossRef]
- Zhu, G.; Xi, C.; Shen, M.; Bao, C.; Zhu, J. Nanosheet-Based Hierarchical Ni2(CO3)(OH)2 Microspheres with Weak Crystallinity for High-Performance Supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 17208–17214. [Google Scholar] [CrossRef]
- Zheng, J.P.; Cygan, P.J.; Jow, T.R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142, 2699–2703. [Google Scholar] [CrossRef]
- Azizi, S.; Seifi, M.; Moghadam, M.T.T.; Askari, M.B.; Varma, R.S. High-capacity MnCo2O4/NiCo2O4 as electrode materials for electrochemical supercapacitors. J. Phys. Chem. Solids 2023, 174, 111176. [Google Scholar] [CrossRef]
- Mandal, S.; Hu, J.; Shi, S.Q. A comprehensive review of hybrid supercapacitor from transition metal and industrial crop based activated carbon for energy storage applications. Mater. Today Commun. 2023, 34, 105207. [Google Scholar] [CrossRef]
- Tu, Q.; Zhang, Q.; Sun, X.; Wang, J.; Lin, B.; Chen, L.; Liu, J.; Deng, Z. Construction of three-dimensional nickel-vanadium hydrotalcite with ball-flower architecture for screen-printed asymmetric supercapacitor. Appl. Surf. Sci. 2023, 615, 156347. [Google Scholar] [CrossRef]
- Jiao, Z.; Chen, Y.; Du, M.; Demir, M.; Yan, F.; Xia, W.; Zhang, Y.; Wang, C.; Gu, M.; Zhang, X.; et al. 3D hollow NiCo LDH nanocages anchored on 3D CoO sea urchin-like microspheres: A novel 3D/3D structure for hybrid supercapacitor electrodes. J. Colloid Interface Sci. 2023, 633, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhu, W.; Lei, X.; Williams, G.R.; O’Hare, D.; Chang, Z.; Sun, X.; Duan, X. High pseudocapacitive cobalt carbonate hydroxide films derived from CoAl layered double hydroxides. Nanoscale 2012, 4, 3640. [Google Scholar] [CrossRef]
- Yan, W.; Zeng, H.-Y.; Zhang, K.; Long, Y.-W.; Wang, M.-X. Ni-Co-Mn hydrotalcite-derived hierarchically porous sulfide for hybrid supercapacitors. J. Colloid Interface Sci. 2023, 635, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tian, L.; Zhao, X.; Ali, M.; Yin, K.; Xing, Z. In situ growth MoS2/NiS composites on Ni foam as electrode materials for supercapacitors. Mater. Today Commun. 2023, 34, 105041. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, Z.; Zhao, W.; Tao, K.; Li, G.; Han, L. Hierarchical hybrid electrodes with NiCo2S4 nanosheets and Co4S3 nanocages for high energy density supercapacitors. J. Alloys Compd. 2023, 937, 168279. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, Y.; Du, C.; Xiao, T.; Wan, L. Two-step electrodeposition synthesis of iron cobalt selenide and nickel cobalt phosphate heterostructure for hybrid supercapacitors. J. Colloid Interface Sci. 2023, 629, 1049–1060. [Google Scholar] [CrossRef]
- Deshmukh, T.B.; Babar, P.; Kedara Shivasharma, T.; Sankapal, B.R. Mixed-valence iron phosphate: Superhydrophilic multi-plated microflakes towards symmetric supercapacitor. Surf. Interfaces 2022, 35, 102419. [Google Scholar] [CrossRef]
- Tanwar, S.; Arya, A.; Sharma, A.L. MoSe2-FeOOH nanocomposite as hybrid electrode material for high-performance symmetric supercapacitor. Mater. Res. Bull. 2023, 160, 112144. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, D.; Jin, F.; Sun, Y.; Wang, J.; Jiang, M.; Cao, J.; Zhang, B.; Liu, J. Compression-tolerant supercapacitor based on NiCo2O4/Ti3C2Tx MXene/reduced graphene oxide composite aerogel with insights from density functional theory simulations. J. Colloid Interface Sci. 2023, 636, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Mousavi Nakhodchari, M.; Seifi, M.; Tourchi Moghadam, M.T. Ternary MnCo2O4/MWCNT/rGO nanocomposites as high-performance supercapacitor electrode materials. J. Phys. Chem. Solids 2023, 174, 111170. [Google Scholar] [CrossRef]
- Hu, B.; Chen, S.; Liu, S.; Wu, Q.; Yao, W.; Yu, S. Controllable Synthesis of Zinc-Substituted α- and β-Nickel Hydroxide Nanostructures and Their Collective Intrinsic Properties. Chem. A Eur. J. 2008, 14, 8928–8938. [Google Scholar] [CrossRef]
- Shangguan, E.; Li, J.; Guo, D.; Guo, L.; Nie, M.; Chang, Z.; Yuan, X.-Z.; Wang, H. A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. J. Power Sources 2015, 282, 158–168. [Google Scholar] [CrossRef]
- Wei, W.; Cui, S.; Ding, L.; Mi, L.; Chen, W.; Hu, X. Urchin-Like Ni1/3Co2/3(CO3)1/2(OH) 0.11H2O for Ultrahigh-Rate Electrochemical Supercapacitors: Structural Evolution from Solid to Hollow. ACS Appl. Mater. Interfaces 2017, 9, 40655–40670. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Y.; Ma, J.; Xiong, X.; Zeng, X.; Qian, H. Novel electrochemical deposition of Co(CO3)0.5(OH)∙0.11H2O nano-needles with folded umbrella-like architecture onto nickel foam for supercapacitors. Surf. Coatings Technol. 2021, 421, 127452. [Google Scholar] [CrossRef]
- Sun, B.; Fan, X.; Hou, R.; Zhao, G.; Liu, Q.; Zhou, H.; Liang, P. Electrode made of NiCo double hydroxide on oxidized activated carbon for asymmetric supercapacitors. Chem. Eng. J. 2023, 454, 140280. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Tian, G.; Wei, Y.; Liu, T. Synthesis of NiCo-LDH@nitrogen-doped graphene hydrogel/nickel foam composites with 3D hierarchical structure for supercapacitors. Mater. Lett. 2023, 334, 133698. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Ma, M.; Ni, G.; Sun, Z.; Liu, J.; Wu, Y. 3D Hierarchical Urchin-Like Ni0.3Co0.6Cu0.1(CO3)0.5(OH) Microspheres for Supercapacitors with High Specific Capacitance. Energy Fuels 2021, 35, 20358–20366. [Google Scholar] [CrossRef]
- Xiao, Q.; Yuan, Y.; Zhu, J.; Shi, Z.; Li, Z.; Zhu, J. Carbonate doped nickel-cobalt layered double hydroxide for high performance asymmetric supercapacitors. J. Alloys Compd. 2022, 916, 165391. [Google Scholar] [CrossRef]
- Abouelamaiem, D.I.; He, G.; Parkin, I.; Neville, T.P.; Jorge, A.B.; Ji, S.; Wang, R.; Titirici, M.-M.; Shearing, P.R.; Brett, D.J.L. Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustain. Energy Fuels 2018, 2, 772–785. [Google Scholar] [CrossRef]
- Shewale, P.S.; Yun, K.-S. NiCo2O4/RGO Hybrid Nanostructures on Surface-Modified Ni Core for Flexible Wire-Shaped Supercapacitor. Nanomaterials 2021, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hu, Z.; Shao, X.; Cheng, P.; Li, S.; Yu, W.; Lin, W.; Yuan, D. Large Scale Synthesis of NiCo Layered Double Hydroxides for Superior Asymmetric Electrochemical Capacitor. Sci. Rep. 2016, 6, 18737. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Ohlckers, P.; Chen, X. One-Step and Morphology-Controlled Synthesis of Ni-Co Binary Hydroxide on Nickel Foam for High-Performance Supercapacitors. Appl. Sci. 2020, 10, 3814. [Google Scholar] [CrossRef]
- Baek, S.-H.; Jeong, Y.-M.; Kim, D.Y.; Park, I.-K. Phase transformation of NiCo hydroxides derived from carbonate anion and its effect on electrochemical pseudocapacitor performance. Chem. Eng. J. 2020, 393, 124713. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, S.; Sun, L.; Xu, F.; Wang, M.; Zhang, J.; Mu, X.; Wang, X.; Wang, P.; Liu, J.; et al. Hierarchical NiFe2O4-NiAl-LDH arrays immobilized on activated carbon cloth for bifunctional application on high-performance supercapacitors and solar steam generation. Sustain. Mater. Technol. 2022, 33, e00500. [Google Scholar] [CrossRef]
- Rieu, M.; Camara, M.; Tournier, G.; Viricelle, J.-P.; Pijolat, C.; de Rooij, N.F.; Briand, D. Fully inkjet printed SnO2 gas sensor on plastic substrate. Sensors Actuators B Chem. 2016, 236, 1091–1097. [Google Scholar] [CrossRef]
- Homenick, C.M.; James, R.; Lopinski, G.P.; Dunford, J.; Sun, J.; Park, H.; Jung, Y.; Cho, G.; Malenfant, P.R.L. Fully Printed and Encapsulated SWCNT-Based Thin Film Transistors via a Combination of R2R Gravure and Inkjet Printing. ACS Appl. Mater. Interfaces 2016, 8, 27900–27910. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Mokrushin, A.S.; Simonenko, N.P.; Voronov, V.A.; Kim, V.P.; Tkachev, S.V.; Gubin, S.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Ink-jet printing of a TiO2–10%ZrO2 thin film for oxygen detection using a solution of metal alkoxoacetylacetonates. Thin Solid Films 2019, 670, 46–53. [Google Scholar] [CrossRef]
- Sajedi-Moghaddam, A.; Rahmanian, E.; Naseri, N. Inkjet-printing technology for supercapacitor application: Current state and perspectives. ACS Appl. Mater. Interfaces 2020, 12, 34487–34504. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Vlasov, I.S.; Solovey, V.R.; Shelaev, A.V.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Kozodaev, M.G.; et al. Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system. J. Colloid Interface Sci. 2021, 588, 209–220. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Vlasov, I.S.; Volkov, I.A.; Kuznetsov, N.T. Microplotter Printing of Hierarchically Organized Planar NiCo2O4 Nanostructures. Russ. J. Inorg. Chem. 2022, 67, 1848–1854. [Google Scholar] [CrossRef]
- Fedorov, F.S.; Simonenko, N.P.; Trouillet, V.; Volkov, I.A.; Plugin, I.A.; Rupasov, D.P.; Mokrushin, A.S.; Nagornov, I.A.; Simonenko, T.L.; Vlasov, I.S.; et al. Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an “Electronic Olfaction” Unit. ACS Appl. Mater. Interfaces 2020, 12, 56135–56150. [Google Scholar] [CrossRef]
- Sobolewski, P.; Goszczynska, A.; Aleksandrzak, M.; Urbas, K.; Derkowska, J.; Bartoszewska, A.; Podolski, J.; Mijowska, E.; Fray, M. El A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite. Beilstein J. Nanotechnol. 2017, 8, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Simonenko, E.P.; Kuznetsov, N.T. Microextrusion Printing of Multilayer Hierarchically Organized Planar Nanostructures Based on NiO, (CeO2)0.8(Sm2O3)0.2 and La0.6Sr0.4Co0.2Fe0.8O3−δ. Micromachines 2022, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Grafov, O.Y.; Simonenko, E.P.; Kuznetsov, N.T. Synthesis of ((CeO2)0.8(Sm2O3)0.2)@NiO Core-Shell Type Nanostructures and Microextrusion Printing of a Composite Anode Based on Them. Materials 2022, 15, 8918. [Google Scholar] [CrossRef]
- Gorobtsov, P.Y.; Mokrushin, A.S.; Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Kuznetsov, N.T. Microextrusion Printing of Hierarchically Structured Thick V2O5 Film with Independent from Humidity Sensing Response to Benzene. Materials 2022, 15, 7837. [Google Scholar] [CrossRef]
- Fisenko, N.A.; Solomatov, I.A.; Simonenko, N.P.; Mokrushin, A.S.; Gorobtsov, P.Y.; Simonenko, T.L.; Volkov, I.A.; Simonenko, E.P.; Kuznetsov, N.T. Atmospheric Pressure Solvothermal Synthesis of Nanoscale SnO2 and Its Application in Microextrusion Printing of a Thick-Film Chemosensor Material for Effective Ethanol Detection. Sensors 2022, 22, 9800. [Google Scholar] [CrossRef]
- Simonenko, N.P.; Kadyrov, N.S.; Simonenko, T.L.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Preparation of ZnS Nanopowders and Their Use in the Additive Production of Thick-Film Structures. Russ. J. Inorg. Chem. 2021, 66, 1283–1288. [Google Scholar] [CrossRef]
- Seo, H.; Nishi, T.; Kishimoto, M.; Ding, C.; Iwai, H.; Saito, M.; Yoshida, H. Study of Microextrusion Printing for Enlarging Electrode–Electrolyte Interfacial Area in Anode-Supported SOFCs. ECS Trans. 2019, 91, 1923–1931. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Mokrushin, A.S.; Solovey, V.R.; Pozharnitskaya, V.M.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Lizunova, A.A.; et al. Pen plotter printing of Co3O4 thin films: Features of the microstructure, optical, electrophysical and gas-sensing properties. J. Alloys Compd. 2020, 832, 154957. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Fisenko, N.A.; Gorobtsov, P.Y.; Simonenko, T.L.; Glumov, O.V.; Melnikova, N.A.; Simonenko, N.P.; Bukunov, K.A.; Simonenko, E.P.; Sevastyanov, V.G.; et al. Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor. Talanta 2021, 221, 121455. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Pozharnitskaya, V.M.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Sevastyanov, V.G.; Kuznetsov, N.T. Pen Plotter Printing of MnOx Thin Films Using Manganese Alkoxoacetylacetonate. Russ. J. Inorg. Chem. 2021, 66, 1416–1424. [Google Scholar] [CrossRef]
- Kokulnathan, T.; Wang, T.-J.; Ahmed, F.; Arshi, N. Fabrication of flower-like nickel cobalt-layered double hydroxide for electrochemical detection of carbendazim. Surf. Interfaces 2023, 36, 102570. [Google Scholar] [CrossRef]
- Su, W.; Wu, F.; Fang, L.; Hu, J.; Liu, L.; Guan, T.; Long, X.; Luo, H.; Zhou, M. NiCo-LDH nanowires@nanosheets core-shell structure grown on carbon fiber cloth for high performance flexible supercapacitor electrode. J. Alloys Compd. 2019, 799, 15–25. [Google Scholar] [CrossRef]
- Porta, P.; Dragone, R.; Fierro, G.; Inversi, M.; Jacono, M.L.; Moretti, G. Preparation and characterisation of cobalt–copper hydroxysalts and their oxide products of decomposition. J. Chem. Soc. Faraday Trans. 1992, 88, 311–319. [Google Scholar] [CrossRef]
- Zhou, T.; Gao, W.; Wang, Q.; Umar, A. Effect of Fluoride on the Morphology and Electrochemical Property of Co3O4 Nanostructures for Hydrazine Detection. Materials 2018, 11, 207. [Google Scholar] [CrossRef]
- Wu, J.; Mi, R.; Li, S.; Guo, P.; Mei, J.; Liu, H.; Lau, W.-M.; Liu, L.-M. Hierarchical three-dimensional NiCo2O4 nanoneedle arrays supported on Ni foam for high-performance supercapacitors. RSC Adv. 2015, 5, 25304–25311. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Zhou, J.; Sui, Z.; Zhou, X. Hierarchical NiCo LDH–rGO/Ni Foam Composite as Electrode Material for High-Performance Supercapacitors. Trans. Tianjin Univ. 2019, 25, 266–275. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Du, X.; Ma, X.; Hao, X.; Ma, W.; Wang, K.; Guan, G.; Abudula, A. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions. Electrochim. Acta 2020, 331, 135288. [Google Scholar] [CrossRef]
- Abitkar, S.B.; Dhas, S.D.; Jadhav, N.P.; Jadhav, P.R.; Maldar, P.S.; Patil, C.E.; Moholkar, A.V. Enhanced specific capacitance and electrochemical properties of nickel hydroxide-activated carbon (α-Ni(OH)2–AC) nanocomposite for pseudocapacitor electrode material. J. Mater. Sci. Mater. Electron. 2021, 32, 8657–8667. [Google Scholar] [CrossRef]
- Bion, N.; Saussey, J.; Hedouin, C.; Seguelong, T.; Daturi, M. Evidence by in situ FTIR spectroscopy and isotopic effect of new assignments for isocyanate species vibrations on Ag/Al2O3. Phys. Chem. Chem. Phys. 2001, 3, 4811–4816. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Zhao, W.; Wei, W.; Sun, Y. Reaction of zinc oxide with urea and its role in urea methanolysis. React. Kinet. Mech. Catal. 2010, 99, 381–389. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Q.; Guo, X.; Zeng, Q.; Wang, L. Rethinking Co(CO3)0.5(OH) 0.11H2O: A new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution. Green Chem. 2018, 20, 2967–2972. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Li, Y.; Zhang, L.; Wang, A.; Xiao, N.; Gao, Y.; Li, N.; Song, W.; Ge, L.; et al. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution. Appl. Catal. B Environ. 2019, 254, 145–155. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.; Ling, L.; Wang, X.; Cui, S.; Li, Z.; Jiao, Z.; Cheng, L. Sandwich-like NiCo-LDH/rGO with rich mesopores and high charge transfer capability for flexible supercapacitors. CrystEngComm 2022, 24, 4962–4974. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Liu, Q.; Ding, Y.; Cheng, L.; Wu, M.; Li, Z. Enhanced interfacial electron transfer by constructing NiCo-LDH hollow nanocages decorated N-doped graphene quantum dots heterojunction for high-performance supercapacitors. Appl. Surf. Sci. 2022, 602, 154352. [Google Scholar] [CrossRef]
- Guo, Y.; Hong, X.; Wang, Y.; Li, Q.; Meng, J.; Dai, R.; Liu, X.; He, L.; Mai, L. Multicomponent Hierarchical Cu-Doped NiCo-LDH/CuO Double Arrays for Ultralong-Life Hybrid Fiber Supercapacitor. Adv. Funct. Mater. 2019, 29, 1809004. [Google Scholar] [CrossRef]
- Bhojane, P.; Sinha, L.; Goutam, U.K.; Shirage, P.M. A 3D mesoporous flowers of nickel carbonate hydroxide hydrate for high-performance electrochemical energy storage application. Electrochim. Acta 2019, 296, 112–119. [Google Scholar] [CrossRef]
- Guellati, O.; Harat, A.; Momodu, D.; Dangbegnon, J.; Romero, T.; Begin, D.; Pham-Huu, C.; Manyala, N.; Guerioune, M. Electrochemical measurements of 1D/2D/3DNi-Co bi-phase mesoporous nanohybrids synthesized using free-template hydrothermal method. Electrochim. Acta 2018, 275, 155–171. [Google Scholar] [CrossRef]
- Ramachandran, R.; Lan, Y.; Xu, Z.-X.; Wang, F. Construction of NiCo-Layered Double Hydroxide Microspheres from Ni-MOFs for High-Performance Asymmetric Supercapacitors. ACS Appl. Energy Mater. 2020, 3, 6633–6643. [Google Scholar] [CrossRef]
- Kurra, N.; Alhebshi, N.A.; Alshareef, H.N. Microfabricated Pseudocapacitors Using Ni(OH)2 Electrodes Exhibit Remarkable Volumetric Capacitance and Energy Density. Adv. Energy Mater. 2015, 5, 1401303. [Google Scholar] [CrossRef]
- Lu, H.; Chen, J.; Tian, Q. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles. J. Colloid Interface Sci. 2018, 513, 342–348. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Nikitin, A.S.; Muradova, A.G.; Tokunov, Y.M.; Kalinin, S.G.; Simonenko, E.P.; Kuznetsov, N.T. Synthesis and Printing Features of a Hierarchical Nanocomposite Based on Nickel–Cobalt LDH and Carbonate Hydroxide Hydrate as a Supercapacitor Electrode. Appl. Sci. 2023, 13, 5844. https://doi.org/10.3390/app13105844
Simonenko TL, Simonenko NP, Gorobtsov PY, Nikitin AS, Muradova AG, Tokunov YM, Kalinin SG, Simonenko EP, Kuznetsov NT. Synthesis and Printing Features of a Hierarchical Nanocomposite Based on Nickel–Cobalt LDH and Carbonate Hydroxide Hydrate as a Supercapacitor Electrode. Applied Sciences. 2023; 13(10):5844. https://doi.org/10.3390/app13105844
Chicago/Turabian StyleSimonenko, Tatiana L., Nikolay P. Simonenko, Philipp Yu. Gorobtsov, Andrey S. Nikitin, Aytan G. Muradova, Yuri M. Tokunov, Stanislav G. Kalinin, Elizaveta P. Simonenko, and Nikolay T. Kuznetsov. 2023. "Synthesis and Printing Features of a Hierarchical Nanocomposite Based on Nickel–Cobalt LDH and Carbonate Hydroxide Hydrate as a Supercapacitor Electrode" Applied Sciences 13, no. 10: 5844. https://doi.org/10.3390/app13105844
APA StyleSimonenko, T. L., Simonenko, N. P., Gorobtsov, P. Y., Nikitin, A. S., Muradova, A. G., Tokunov, Y. M., Kalinin, S. G., Simonenko, E. P., & Kuznetsov, N. T. (2023). Synthesis and Printing Features of a Hierarchical Nanocomposite Based on Nickel–Cobalt LDH and Carbonate Hydroxide Hydrate as a Supercapacitor Electrode. Applied Sciences, 13(10), 5844. https://doi.org/10.3390/app13105844