Experimental Tests in Production of Ready-to-Drink Primitive Wine with Different Modes of Circulation of the Fermenting Must
Abstract
:1. Introduction
2. Materials and Methods
2.1. Traditional Wine Tank with Automatic Pump-Over
2.2. Innovative Wine Tank with a Pneumatic Cap for Breaking up the Marc
- Compressor;
- Compressed air tank;
- Air treatment coil (dehumidification and filtration);
- Primary pipe;
- n. 2 shut-off valves;
- On/off solenoid valve (opening time: 0.001 s–20 s; pause/work time: 0.001 s–120 s; number of cycles: 2–100);
- Pressure transducers;
- Temperature probes;
- Density meters;
- Electrical panel with PLC.
2.3. Experimental Tests
3. Results and Discussion
3.1. Power Consumption Results
Parameters | Pump-Over Group (Pump + Diffuser) | Extraction Group | Drain-Pressing Line | Total Values |
---|---|---|---|---|
Average active power absorbed | 11 kW | 1.16 kW | 8.9 kW | / |
Electric consumption | 197 kWh | 2.12 kWh | 34.1 kWh | 233.22 kWh |
Specific energy | 0.200 kWh/hLmust | 0.0021 kWh/hLmust | 0.046 kWh/hLwine | 0.320 kWh/hLwine |
Wine obtained | / | / | 740 hL | 740 hL |
Parameters | Compressor | Extraction Group | Pressing Draining Line | Total Value |
---|---|---|---|---|
Average active power absorbed | 25 kW | 1.57 kW | 11.78 kW | / |
Electric consumption | 2.6 kWh | 1.23 kWh | 32.4 kWh | 18.23 kWh |
Specific energy | 0.0026 kWh/hLmust | 0.0012 kWh/hLmust | 0.0430 kWh/hLwine | 0.0240 kWh/hLwine |
Wine obtained | / | / | 760 hL | 760 hL |
3.2. Analytical Results
Parameters | Wine Tank with Pneumatic Cap Breaks | Standard Deviation | Wine Tank with Pump-Over System | Standard Deviation |
---|---|---|---|---|
Density | 1.08 g/mL | 0.07 | 1.08 g/mL | 0.06 |
Reducing weight | 196 g/L | 15.43 | 189 g/L | 10.38 |
Effective degree | 1.97° | 0.11 | 2.12° | 0.11 |
O.D. 420 | 1.30 | 0.06 | 1.21 | 0.06 |
O.D. 520 | 2.80 | 0.14 | 2.59 | 0.17 |
O.D. 620 | 0.50 | 0.03 | 0.30 | 0.02 |
Dye intensity | 4.60 | 0.19 | 4.10 | 0.18 |
Tonality | 0.45 | 0.02 | 0.45 | 0.034 |
Total polyphenols | 740 mg/L | 32.03 | 592 mg/L | 22.68 |
pH | 3.45 | 0.11 | 3.45 | 0.12 |
Total acidity | 6.50 g/L | 0.32 | 5.50 g/L | 0.20 |
Pick up time (hours after hat break) | 24 h | 24 h |
Parameters | Wine Tank with Pneumatic Cap Breaking | Standard Deviation | Wine Tank with Pump-Over System | Standard Deviation |
---|---|---|---|---|
Density | 1.05 g/mL | 0.06 | 1.03 g/mL | 0.05 |
Reducing weight | 132 g/L | 6.25 | 79 g/L | 3.79 |
Effective degree | 5.93° | 0.231 | 8.98° | 0.34 |
O.D. 420 | 2.00 | 0.101 | 1.94 | 0.08 |
O.D. 520 | 3.20 | 0.165 | 2.89 | 0.13 |
O.D. 620 | 0.80 | 0.036 | 0.80 | 0.03 |
Dye intensity | 6.00 | 0.247 | 5.63 | 0.23 |
Tonality | 0.60 | 0.027 | 0.67 | 0.02 |
Total polyphenols | 1.48 mg/L | 0.083 | 1.64 mg/L | 0.09 |
pH | 3.50 | 0.139 | 3.47 | 0.17 |
Total acidity | 7.00 g/L | 0.381 | 6.85 g/L | 0.29 |
Pick up time (hours after hat break) | 72 h | 96 h |
Parameters | Wine Tank with Pneumatic Cap Breaking | Standard Deviation | Wine Tank with Pump-Over System | Standard Deviation |
---|---|---|---|---|
Density | 0.99 g/mL | 0.05 | 0.99 g/mL | 0.03 |
Reducing weight | 0.60 g/L | 0.02 | 0.60 g/L | 0.02 |
Effective degree | 13.88° | 0.73 | 13.70° | 0.76 |
O.D. 420 | 2.11 | 0.08 | 2.00 | 0.10 |
O.D. 520 | 3.70 | 0.24 | 3.00 | 0.16 |
O.D. 620 | 1.00 | 0.03 | 1.00 | 0.04 |
Dye intensity | 6.81 | 0.32 | 6.50 | 0.36 |
Tonality | 0.60 | 0.02 | 0.66 | 0.03 |
Total polyphenols | 2.01 mg/L | 0.11 | 1.85 mg/L | 0.10 |
pH | 3.60 | 0.15 | 3.60 | 0.15 |
Total acidity | 7.00 g/L | 0.29 | 7.00 g/L | 0.27 |
Pick up time (hours after hat break) | 120 h | 144 h |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bianchi, B.; Cavone, G.; Cice, G.; Tamborrino, A.; Amodio, M.; Capotorto, I.; Catalano, P. CO2 Employment as Refrigerant Fluid with a Low Environmental Impact. Experimental Tests on Arugula and Design Criteria for a Test Bench. Sustainability 2015, 7, 3734. [Google Scholar] [CrossRef]
- Bianchi, B.; Tamborrino, A.; Giametta, F.; Squeo, G.; Difonzo, G.; Catalano, P. Modified Rotating Reel for Malaxer Machines: Assessment of Rheological Characteristics, Energy Consumption, Temperature Profile, and Virgin Olive Oil Quality. Foods 2020, 9, 813. [Google Scholar] [CrossRef]
- Rahimifard, S.; Seow, Y.; Childs, T. Minimising Embodied Product Energy to Support Energy Efficient Manufacturing. CIRP Ann. Manuf. Technol. 2010, 59, 25–28. [Google Scholar] [CrossRef]
- Garwood, T.L.; Hughes, B.R.; Oates, M.R.; O’Connor, D.; Hughes, R. A Review of Energy Simulation Tools for the Manufacturing Sector. Renew. Sustain. Energy Rev. 2018, 81, 895–911. [Google Scholar]
- Dolgui, A.; Ivanov, D.; Sethi, S.P.; Sokolov, B. Scheduling in Production, Supply Chain and Industry 4.0 Systems by Optimal Control: Fundamentals, State-of-the-Art and Applications. Int. J. Prod. Res. 2019, 57, 411–432. [Google Scholar]
- Tamborrino, A.; Catalano, F.; Berardi, A.; Bianchi, B. New Modelling Approach for the Energy and Steam Consumption Evaluation in a Fresh Pasta Industry. Chem. Eng. Trans. 2021, 87, 409–414. [Google Scholar] [CrossRef]
- Tamborrino, A.; Perone, C.; Catalano, F.; Squeo, G.; Caponio, F.; Bianchi, B. Modelling Energy Consumption and Energy-Saving in High-Quality Olive Oil Decanter Centrifuge: Numerical Study and Experimental Validation. Energies 2019, 12, 2592. [Google Scholar] [CrossRef]
- Perone, C.; Catalano, F.; Giametta, F.; Tamborrino, A.; Bianchi, B.; Ayr, U. Study and Analysis of a Cogeneration System with Microturbines in a Food Farming of Dry Pasta. Chem. Eng. Trans. 2017, 58, 499–504. [Google Scholar] [CrossRef]
- Catalano, F.; Perone, C.; Iannacci, V.; Leone, A.; Tamborrino, A.; Bianchi, B. Energetic Analysis and Optimal Design of a CHP Plant in a Frozen Food Processing Factory through a Dynamical Simulation Model. Energy Convers. Manag. 2020, 225, 113444. [Google Scholar] [CrossRef]
- Bianchi, B.; Catalano, F.; Oliveto, R.; Ricciardi, S. Dynamic Simulation Driven Design and Management of Production Facilities in Agricultural/Food Industry. Proc. Acta Hortic. 2021, 1311, 241–248. [Google Scholar]
- Catalano, F.; Leone, A.; Bianchi, B.; Tamborrino, A. A New Tool for Food Industrial Plant Simulation and IoT Control. Chem. Eng. Trans. 2021, 87, 367–372. [Google Scholar] [CrossRef]
- Perone, C.; Catalano, P.; Giametta, F.; La Fianza, G.; Brunetti, L.; Bianchi, B. Controlled Mechanical Ventilation to Reduce Primary Energy Consumption in Air Conditioning of Greenhouses. In Lecture Notes in Civil Engineering; Coppola, A., Di Renzo, G.C., Altieri, G., D’Antonio, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 67, pp. 399–407. [Google Scholar]
- Tamborrino, A.; Catalano, F.; Leone, A.; Bianchi, B. A Real Case Study of a Full-Scale Anaerobic Digestion Plant Powered by Olive By-Products. Foods 2021, 10, 1946. [Google Scholar] [CrossRef]
- Ulyev, L.M.; Kanischev, M.V.; Chibisov, R.E.; Vasilyev, M.A. Heat Integration of an Industrial Unit for the Ethylbenzene Production. Energies 2021, 14, 3839. [Google Scholar] [CrossRef]
- Thollander, P.; Palm, J. Improving Energy Efficiency in Industrial SMEs. In Improving Energy Efficiency in Industrial Energy Systems; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- De Vita, P.; De Vita, G. Manuale Di Meccanica Enologica: Richiami Di Fisica, Saldature, Cantina, Vasi Vinari, Vendemmia, Ammostatura, Chiarifica, Vinificatori, Filtri, Impianti Solari, per Concentrazione Mosti, Elettrici, Di Refrigerazione, Di Pastorizzazione, per Spumanti, Di Imbottigliamento, Distillazione, Depurazione, Pompe, Normative Specifiche; Hoepli: Milan, Italy, 2011. [Google Scholar]
- Kubule, A.; Zogla, L.; Ikaunieks, J.; Rosa, M. Highlights on Energy Efficiency Improvements: A Case of a Small Brewery. J. Clean. Prod. 2016, 138, 275–286. [Google Scholar] [CrossRef]
- Colombié, S.; Malherbe, S.; Sablayrolles, J.M. Modeling of Heat Transfer in Tanks during Wine-Making Fermentation. Food Control. 2007, 18, 953–960. [Google Scholar] [CrossRef]
- Varma, R.R. Heat Transfer in Unitanks. Mon. Fur Brauwiss. 1999, 52, 4–8. [Google Scholar]
- López, A.; Secanell, P. A Simple Mathematical Empirical Model for Estimating the Rate of Heat Generation during Fermentation in White-Wine Making. Int. J. Refrig. 1992, 15, 276–280. [Google Scholar] [CrossRef]
- le Roux, J.M.W.; Purchas, K.; Nell, B. Refrigeration Requirements for Precooling and Fermentation Control in Wine Making. S. Afr. J. Enol. Vitic. 2017, 7, 6–13. [Google Scholar] [CrossRef]
- Manzocco, L.; Maltini, E.; Lerici, C.R. Changes of Some Thermal and Physical Properties in Model Systems Simulating an Alcoholic Fermentation. J. Food Process. Preserv. 1998, 22, 1–12. [Google Scholar] [CrossRef]
- Malherbe, S.; Fromion, V.; Hilgert, N.; Sablayrolles, J.M. Modeling the Effects of Assimilable Nitrogen and Temperature on Fermentation Kinetics in Enological Conditions. Biotechnol. Bioeng. 2004, 86, 261–272. [Google Scholar] [CrossRef]
- Williams, L.A.; Boulton, R. Modeling and Prediction of Evaporative Ethanol Loss During Wine Fermentations. Am. J. Enol. Vitic. 1983, 34, 234–242. [Google Scholar] [CrossRef]
- Genc, M.; Genc, S.; Goksungur, Y. Exergy Analysis of Wine Production: Red Wine Production Process as a Case Study. Appl. Therm. Eng. 2017, 117, 511–521. [Google Scholar] [CrossRef]
- Glories, Y. Recherches Sur La Matiere Colorant Des Vins Rouges. Ph.D. Thesis, Université de Bordeaux II, Bordeaux, France, 1978. [Google Scholar]
- Pettinelli, S.; Pardini, L.; De Angeli, G.; Bianchi, A.; Najar, B.; Cerreta, R.; Bellincontro, A.; Floridia, G.; Mencarelli, F. Innovative “Soft” Maceration Techniques in Red Grape Fermentation. Beverages 2022, 8, 62. [Google Scholar] [CrossRef]
- Alimonti, C.; Pecci, G. Back Analysis of a Horizontal Geothermal Plant Implemented in a Wine Production Process. Sustainability 2022, 14, 157. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, Q.; Qian, Q.; Zhang, T.; Zhang, J.; Zhuang, J.; Wang, W. A Real-time Realization Method for the Pneumatic Positioning System of the Industrial Automated Production Line Using Low-cost on–off Valves. Actuators 2021, 10, 260. [Google Scholar] [CrossRef]
- Perone, C.; Bianchi, B.; Catalano, F.; Orsino, M. Experimental Evaluation of Functional and Energy Performance of Pneumatic Oenological Presses for High Quality White Wines. Sustainability 2022, 14, 8033. [Google Scholar] [CrossRef]
Machine | Technical Parameters | Installed Power | Circulation System of the Fermenting Product |
---|---|---|---|
Receiving tank | Capacity = 800 q Auger diameter = 40 cm Auger rotation speed = 5–19 rpm Auger capacity = 750–1000 q/h | 15.0 kW | |
Destemmer Vertical crusher | Operational capacity = 800 q/h Rotation speed = 300 rpm | 18.5 kW | |
Wine tank | Capacity = 1000 hL | 14.4 kW (Diffuser: 0.4 kW, replacement pump: 11 kW, pomace extraction group 3 kW) | Traditional |
Wine tank | Capacity = 1000 hL | 3.0 kW (Centralized compressor, pomace extraction group at 5 rpm) | Pneumatic |
Transfer screw | Operational capacity = 700 q/h Diameter = 40 cm Rotation speed = 3–20 rpm | 4 kW | |
Transfer pump | Flow = 600 hL/h | 14 kW | |
Marc transfer pump | Flow = 25–250 hL/h | 11 kW | |
Draining press | Operational capacity = 35–40 t/h | 29.5 kW (Drainer: 7.5 kW; Press: 22 kW) | |
Compressed air plant | n. 4 Screw compressors Pressure: 10 bar n. 4 Tanks of 8000 L | Installed power for each compressor = 25 kW |
Analytics Parameters | Instrumentation |
---|---|
Density | Hydrometer Kem alm-155 |
Specific weight | Hydrometer Gibertini densi-alcomat |
Reducing sugars | Enzymatic Exacta miura one |
Effective degree | Distiller Gibertini super dee |
O.D. 420 | Enzymatic Exacta miura one |
O.D. 520 | Enzymatic Exacta miura one |
O.D. 620 | Enzymatic Exacta miura one |
Dye intensity | Enzymatic Exacta miura one |
Tonality | Enzymatic Exacta miura one |
Total polyphenols | Enzymatic Exacata miura one |
pH | pHmeter Hach Glp 21 |
Total acidity | Titrator with bromothymol blue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalano, F.; Romaniello, R.; Orsino, M.; Perone, C.; Bianchi, B.; Giametta, F. Experimental Tests in Production of Ready-to-Drink Primitive Wine with Different Modes of Circulation of the Fermenting Must. Appl. Sci. 2023, 13, 5941. https://doi.org/10.3390/app13105941
Catalano F, Romaniello R, Orsino M, Perone C, Bianchi B, Giametta F. Experimental Tests in Production of Ready-to-Drink Primitive Wine with Different Modes of Circulation of the Fermenting Must. Applied Sciences. 2023; 13(10):5941. https://doi.org/10.3390/app13105941
Chicago/Turabian StyleCatalano, Filippo, Roberto Romaniello, Michela Orsino, Claudio Perone, Biagio Bianchi, and Ferruccio Giametta. 2023. "Experimental Tests in Production of Ready-to-Drink Primitive Wine with Different Modes of Circulation of the Fermenting Must" Applied Sciences 13, no. 10: 5941. https://doi.org/10.3390/app13105941
APA StyleCatalano, F., Romaniello, R., Orsino, M., Perone, C., Bianchi, B., & Giametta, F. (2023). Experimental Tests in Production of Ready-to-Drink Primitive Wine with Different Modes of Circulation of the Fermenting Must. Applied Sciences, 13(10), 5941. https://doi.org/10.3390/app13105941