A Simple and Inexpensive Method to Gain Diatom Absolute Abundances from Permanent Mounts in Hydrobiological and Paleoecological Research
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
- A lower cost.
- It is relatively simple and requires only basic laboratory equipment, whereas for the microsphere method, more specialized equipment and materials, that can be more expensive, may be necessary.
- Wider applicability: counts based on FOV can also be used for the analysis of the different diatom life forms in a variety of aquatic systems, including lakes, rivers, and marine environments. This means that researchers can easily adapt it, potentially increasing its applicability.
- Higher resolution: our proposed method allows for the counting of individual diatoms, whereas the other methods rely on the counting of external markers. This means that our method may provide higher-resolution data, particularly for smaller diatom taxa.
- Compatibility with existing datasets: there are many existing slides already available that could potentially be re-analyzed for diatom abundance using our proposed method. This compatibility with existing datasets could save time and resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serieyssol, K.; Chatelard, S.; Cubizolle, H. Diatom fossils in mires: A protocol for extraction, preparation and analysis in palaeoenvironmental studies. Mires Peat 2010, 7, 1–11. [Google Scholar]
- Battarbee, R.; Jones, V.; Flower, R.; Cameron, N.; Bennion, H.; Carvalho, L.; Juggins, S. Tracking environmental change using lake sediments. In Terrestrial, Algal, and Siliceous Indicators; Smol, J.P., Birks, H.J.B., Last, W.M., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 3, pp. 155–202. [Google Scholar]
- Battarbee, R.W. A new method for the estimation of absolute microfossil numbers, with reference especially to diatoms. Limnol. Oceanogr. 1973, 18, 647–653. [Google Scholar] [CrossRef]
- Battarbee, R.W. Diatom analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B., Ed.; Wiley: New York, NY, USA, 1986; pp. 527–569. [Google Scholar]
- Scherer, R.P. A new method for the determination of absolute abundance of diatoms and other silt-sized sedimentary particles. J. Paleolimnol. 1994, 12, 171–179. [Google Scholar] [CrossRef]
- Utermöhl, H. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Ther. Angew. Limnol. 1958, 9, 1–38. [Google Scholar]
- Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 1971, 13, 615–621. [Google Scholar]
- Kaland, P.E.; Stabell, B. Methods for absolute diatom frequency analysis and combined diatom and pollen analysis in sediments. Nord. J. Bot. 1981, 1, 697–700. [Google Scholar] [CrossRef]
- Bodén, P. Reproducibility in the Random Settling Method for Quantitative Diatom Analysis. Micropaleontology 1991, 37, 313–319. [Google Scholar] [CrossRef]
- Wolfe, A.P. On diatom concentrations in lake sediments: Results from an inter-laboratory comparison and other tests performed on a uniform sample. J. Paleolimnol. 1997, 18, 261–268. [Google Scholar] [CrossRef]
- Esper, O.; Gersonde, R.; Kadagies, N. Diatom distribution in southeastern Pacific surface sediments and their relationship to modern environmental variables. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 287, 1–27. [Google Scholar] [CrossRef]
- Smol, J.P.; Stoermer, E.F. The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; p. 667. [Google Scholar]
- Bruton, A.; Conway, J.H.; Holgate, S.T. Reliability: What is it, and how is it measured? Physiotherapy 2000, 86, 94–99. [Google Scholar] [CrossRef]
- Alverson, K.D.; Bradley, R.S.; Pedersen, T.F. Paleoclimate, Global Change and the Future; Springer: Berlin/Heidelberg, Germany, 2003; p. 220. [Google Scholar]
- Taylor, J.C.; Harding, W.R.; Archibald, C.G.M. A Methods Manual for the Collection, Preparation and Analysis of Diatom Samples; Version, 1.0.; WRC Report No. TT 281/07; Water Research Commission: Pretoria, South Africa, 2007; p. 60. [Google Scholar]
- Cantonati, M.; Van de Vijver, B.; Lange-Bertalot, H. Microfissurata gen. nov. (Bacillariophyta), a new diatom genus from dystrophic and intermittently wet terrestrial habitats. J. Phycol. 2009, 45, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Krammer, K. The Genus Pinnularia. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag. Kommanditgesellschaft: Ruggell, Liechtenstein, 2000; Volume 1, pp. 1–703. [Google Scholar] [CrossRef]
- Krammer, K. Cymbella. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag. Kommanditgesellschaft: Ruggell, Liechtenstein, 2002; Volume 3, pp. 1–584. [Google Scholar]
- Krammer, K. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag. Kommanditgesellschaft: Ruggell, Liechtenstein, 2003; Volume 4, pp. 1–530. [Google Scholar]
- Lange-Bertalot, H.; Metzeltin, D. Indicators of Oligotrophy: 800 taxa representative of three ecologically distinct lake types: Carbonate buffered, oligodystrophic, weakly buffered soft water. In Iconographia Diatomologica; Koeltz Scientific Books: Königstein, Germany, 1996; Volume 2, pp. 1–390. [Google Scholar]
- Lange-Bertalot, H.; Bąk, M.; Witkowski, A.; Tagliaventi, N. Eunotia and some related genera. In Diatoms of Europe; Lange-Bertalot, H., Ed.; A.R.G. Gantner Verlag. Kommanditgesellschaft: Ruggell, Liechtenstein, 2011; Volume 6, pp. 1–755. [Google Scholar]
- Lange-Bertalot, H.; Hofmann, G.; Werum, M.; Cantonati, M. Freshwater Benthic Diatoms of Central Europe: Over 800 Common Species Used in Ecological Assessment; Koeltz Botanical Books: Schmitten, Oberreifenberg, Germany, 2017; p. 942. [Google Scholar]
- Van de Vijver, B.; Ector, L.; Beltrami, M.E.; de Haan, M.; Falasco, E.; Hlúbiková, D.; Jarlman, A.; Kelly, M.; Novais, M.A.; Wojtal, A.Z. A critical analysis of the type material of Achnanthidium lineare W. Sm. (Bacillariophyceae). Algol Stud. 2011, 136, 167–191. [Google Scholar] [CrossRef]
- Koch, G.G. Intraclass correlation coefficient. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; John Wiley & Sons: New York, NY, USA, 1982; Volume 4, pp. 213–217. [Google Scholar]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. R Package Version 2.2.9. 2022. Available online: https://CRAN.R-project.org/package=psych (accessed on 14 March 2023).
- Moheimani, N.R.; Borowitzka, M.A.; Isdepsky, A.; Sing, S.F. Standard methods for measuring growth of algae and their composition. In Algae for Biofuels and Energy; Borowitzka, M., Moheimani, N., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 5, pp. 265–284. [Google Scholar]
- Nohe, A.; Goffin, A.; Tyberghein, L.; Lagring, R.; De Cauwer, K.; Vyverman, W.; Sabbe, K. Marked changes in diatom and dinoflagellate biomass, composition and seasonality in the Belgian Part of the North Sea between the 1970s and 2000s. Sci. Total Environ. 2020, 716, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, I.; Hamilton, P.B.; Poulin, M. Phytoplankton community metrics based on absolute and relative abundance and biomass: Implications for multivariate analyses. J. Appl. Phycol. 2011, 23, 735–743. [Google Scholar] [CrossRef]
- Bellinger, E.G.; Sigee, D.C. Freshwater Algae: Identification, Enumeration and Use as Bioindicators, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; p. 304. [Google Scholar]
- Salkind, N.J. Encyclopedia of Research Design; SAGE Publications: Washington, DC, USA, 2010; Volume 1, p. 1776. [Google Scholar]
- Alverson, A.J.; Manoylov, K.M.; Stevenson, R.J. Laboratory sources of error for algal community attributes during sample preparation and counting. J. Appl. Phycol. 2003, 15, 357–369. [Google Scholar] [CrossRef]
- Blanco, S.; Álvarez, I.; Cejudo, C. A test on different aspects of diatom processing techniques. J. Appl. Phycol. 2008, 20, 445–450. [Google Scholar] [CrossRef]
- Werner, P.; Adler, S.; Dreßler, M. Effects of counting variances on water quality assessments: Implications from four benthic diatom samples, each counted by 40 diatomists. J. Appl. Phycol. 2016, 28, 2287–2297. [Google Scholar] [CrossRef]
- Kahlert, M.; Kelly, M.; Albert, R.L.; Almeida, S.F.; Bešta, T.; Blanco, S.; Vogel, A. Identification versus counting protocols as sources of uncertainty in diatom-based ecological status assessments. Hydrobiologia 2012, 695, 109–124. [Google Scholar] [CrossRef]
- Kelly, M.; Lewis, A. Assessing the quality of water quality assessments: An analytical quality control protocol for benthic diatoms. Freshw. Forum 1996, 7, 23–32. [Google Scholar]
Microspheres | FOV | |||
---|---|---|---|---|
Sample | Average | RSD | Average | RSD |
smp1 | 11,099,117 | 9 | 473,143,004 | 21 |
smp2 | 8,444,613 | 3 | 213,438,866 | 11 |
smp3 | 6,664,874 | 11 | 60,366,414 | 14 |
smp4 | 804,252,030 | 2 | 20,454,375,290 | 9 |
smp5 | 949,281,872 | 1 | 22,133,434,744 | 16 |
smp6 | 711,199,231 | 5 | 1,871,473,085 | 6 |
smp7 | 212,539,035 | 17 | 2,352,374,624 | 15 |
smp8 | 265,306,395 | 8 | 661,645,077 | 15 |
smp9 | 38,235,048 | 3 | 62,420,591 | 26 |
smp10 | 5,798,106 | 5 | 3,856,625 | 5 |
smp11 | 8,719,384 | 12 | 4,388,682 | 9 |
Interclass Correlation Coefficients | |||
---|---|---|---|
FOV | Microspheres | Combined | |
ICC2 | 0.95 | 0.98 | 0.40 |
Lower bound | 0.93 | 0.95 | 0.17 |
Upper bound | 0.98 | 0.99 | 0.71 |
p-value | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantonati, M.; Cid-Rodríguez, M.; Rossi, F.; Leira, M. A Simple and Inexpensive Method to Gain Diatom Absolute Abundances from Permanent Mounts in Hydrobiological and Paleoecological Research. Appl. Sci. 2023, 13, 6019. https://doi.org/10.3390/app13106019
Cantonati M, Cid-Rodríguez M, Rossi F, Leira M. A Simple and Inexpensive Method to Gain Diatom Absolute Abundances from Permanent Mounts in Hydrobiological and Paleoecological Research. Applied Sciences. 2023; 13(10):6019. https://doi.org/10.3390/app13106019
Chicago/Turabian StyleCantonati, Marco, María Cid-Rodríguez, Floriana Rossi, and Manel Leira. 2023. "A Simple and Inexpensive Method to Gain Diatom Absolute Abundances from Permanent Mounts in Hydrobiological and Paleoecological Research" Applied Sciences 13, no. 10: 6019. https://doi.org/10.3390/app13106019
APA StyleCantonati, M., Cid-Rodríguez, M., Rossi, F., & Leira, M. (2023). A Simple and Inexpensive Method to Gain Diatom Absolute Abundances from Permanent Mounts in Hydrobiological and Paleoecological Research. Applied Sciences, 13(10), 6019. https://doi.org/10.3390/app13106019