Effects of Shading on the Growth and Carbon Storage of Enhalus acoroides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sample Collection
2.3. Measurement of Indicators
2.4. Statistical Analysis
3. Results
3.1. Morphology
3.2. Density
3.3. Biomass
3.4. Chlorophyll
3.5. Sediment Carbon
4. Discussion
4.1. Response of Seagrass Growth to Shading
4.2. Response of Seagrass Chlorophyll Content to Shading
4.3. Effect of Shading on the Carbon Storage of Seagrass Beds
4.4. Response of Seagrass to Light Restoration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.W.; Ye, S.F.; Chen, X.C.; Yang, H.L.; Sun, X.H.; Wang, F.M.; Wen, Q.; Chen, S.B. Coastal blue carbon: Concept, study method, and the application to ecological restoration. Sci. China Earth Sci. 2018, 48, 661–670. [Google Scholar] [CrossRef]
- Ramesh, R.; Banerjee, K.; Paneerselvam, A.; Raghuraman, R.; Purvaja, R.; Lakshmi, A. Importance of Seagrass Management for Effective Mitigation of Climate Change. Coast. Manag. 2019, 14, 283–299. [Google Scholar]
- Ontoria, Y.; Gonzalez-Guedes, E.; Sanmarti, N.; Bernardeau-Estellerb, J.; Ruiz, J.M.; Romerol, J.; Perez, M. Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass. Mar. Environ. Res. 2019, 145, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Browne, N.K.; Yaakub, S.M.; Tay, J.; Todd, P.A. Recreating the shading effects of ship wake induced turbidity to test acclimation responses in the seagrass Thalass. Hemprichii. Estuar. Coast. Shelf Sci. 2017, 199, 87–95. [Google Scholar] [CrossRef]
- Statton, J.; Mcmahon, K.; Lavery, P.; Kendrick, G.A. Determining light stress responses for a tropical multi-species seagrass assemblage. Mar. Pollut. Bull. 2018, 128, 508–518. [Google Scholar] [CrossRef]
- Duarte, C.M. Seagrass depth limits. Aquat. Bot. 1991, 40, 363–377. [Google Scholar] [CrossRef]
- Fraser, M.W.; Short, J.; Kendrick, G.; McLeana, D.; Keesinga, J.; Byrne, M.; Caley, M.J.; Clarke, D.; Davis, A.R.; Erftemeijer, P.L.A.; et al. Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecol. Indic. 2017, 78, 229–242. [Google Scholar] [CrossRef]
- Eriander, L.; Laas, K.; Bergström, P.; Gipperth, L.; Moksnes, P. The effects of small-scale coastal development on the eelgrass (Zostera marina L.) distribution along the Swedish west coast-ecological impact and legal challenges. Ocean. Coast. Manag. 2017, 148, 182–194. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Herren, L.W.; Brewton, R.A.; Alderman, P.K. Nutrient over-enrichment and light limitation of seagrass communities in the Indian River Lagoon, an urbanized subtropical estuary. Sci. Total Environ. 2020, 699, 134068. [Google Scholar] [CrossRef]
- Benham, C.F.; Beavis, S.G.; Hendryr, A.; Jackson, E.L. Growth effects of shading and sedimentation in two tropical seagrass species: Implications for port management and impact assessment. Mar. Pollut. Bull. 2016, 109, 461–470. [Google Scholar] [CrossRef]
- Bertelli, C.M.; Creed, J.C.; Nuuttila, H.K.; Unsworth, R.K.F. The response of the seagrass Halodule wrightii Ascherson to environmental stressors. Estuar. Coast. Shelf Sci. 2020, 238, 106693. [Google Scholar] [CrossRef]
- Collier, C.J.; Waycott, M.; Ospina, A.G. Responses of four Indo-West Pacific seagrass species to shading. Mar. Pollut. Bull. 2012, 65, 342–354. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.; Griffiths, G.; Vercaemer, B. Seasonal response and recovery of eelgrass (Zostera marina) to short-term reductions in light availability. Estuaries Coasts J. Coast. Estuar. Res. Fed. 2019, 43, 120–134. [Google Scholar] [CrossRef]
- Kilminster, K.; McMahon, K.; Waycott, M.; Kendrick, G.A.; Scanes, P.; Mckenzie, L.; O’Brien, K.R.; Lyons, M.; Ferguson, A.; Maxwell, P. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 2015, 534, 97–109. [Google Scholar] [CrossRef]
- Yu, S.; Liu, S.L.; Jiang, K.; Zhang, J.P.; Jiang, Z.J.; Wu, Y.C.; Huang, C.; Zhao, C.Y.; Huang, X.P.; Trevathan-Tackett, S.M. Population genetic structure of the threatened tropical seagrass Enhalus acoroides in Hainan Island, China. Aquat. Bot. 2018, 150, 64–70. [Google Scholar] [CrossRef]
- Chen, S.Q.; Pang, Q.Z.; Cai, Z.F.; Wu, Z.J.; Shen, J.; Wang, D.R.; Chen, H.Y. Analysis of distribution characteristics, health status, and influencing factors of seagrass bed in Li’an Lagoon, Hainan Island. Mar. Sci. 2020, 44, 57–64. [Google Scholar]
- Chen, S.Q.; Wang, D.R.; Wu, Z.J.; Zhang, G.C.; Li, Y.C.; Tu, Z.G.; Yao, H.J.; Cai, Z.F. Discussion of the change trend of the seagrass beds in the east coast of Hainan Island in nearly a decade. Mar. Environ. Sci. 2015, 34, 48–53. [Google Scholar]
- Cai, Z.F.; Chen, S.Q.; Wu, Z.J.; Liang, D.M.; Yin, F.; Tong, Y.H.; Wang, D.R. Distribution Differences and Environmental Effects of Seagrasses Between Bays and Lagoons of Hainan Island. Trans. Oceanol. Limnol. 2017, 3, 74–84. [Google Scholar] [CrossRef]
- Moore, B.R.H. Laboratory Guide for Elementary Plant Physiology; Burgess Publishing: Minneapolis, MN, USA, 1957; pp. 73–74. [Google Scholar]
- Gao, J.F. Experimental Guidance for Plant Physiology; Higher Education Press: Beijing, China, 2006; pp. 74–77. [Google Scholar]
- Bao, S.D. Agrochemical Analysis of Soil, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 285–292. [Google Scholar]
- Bertelli, C.M.; Unsworth, R. Light Stress Responses by the Eelgrass, Zostera marina (L.). Front. Environ. Sci. 2018, 6, 39–51. [Google Scholar] [CrossRef]
- Deyanova, D.; Gullstrom, M.; Lyimo, L.D.; Dahl, M.; Hamisi, M.I.; Mtolera, M.S.P.; Björk, M. Contribution of seagrass plants to CO2 capture in a tropical seagrass meadow under experimental disturbance. PLoS ONE 2017, 12, e0181386. [Google Scholar] [CrossRef]
- Suykerbuyk, W.; Govers, L.L.; van Oven, W.G.; Giesen, K.; Giesen, W.B.J.T.; de Jong, D.J.; Bouma, T.J.; van Katwijk, M.M. Living in the intertidal; desiccation and shading reduce seagrass growth, but high salinity or population of origin have no additional effect. PeerJ 2018, 6, e5234. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Kim, S.H.; Lee, K.S. Seasonal growth responses of the seagrass Zostera marina under severely diminished light conditions. Estuaries Coasts 2015, 38, 558–568. [Google Scholar] [CrossRef]
- Enríquez, S. Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Mar. Ecol. Prog. 2005, 289, 141–150. [Google Scholar] [CrossRef]
- Longstaff, B.J.; Loneragan, N.R.; O’donohue, M.J.; Dennison, W.C. Effects of light deprivation on the survival and recovery of the seagrass Halophila ovalis (R.Br.) Hook. J. Exp. Mar. Biol. Ecol. 1999, 234, 1–27. [Google Scholar] [CrossRef]
- Silva, J.; Barrote, I.; Costa, M.M.; Albano, S.; Santos, R. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS ONE 2013, 8, e81058. [Google Scholar] [CrossRef] [PubMed]
- Fokeera-Wahedally, S.; Bhikajee, M. The effects of in situ shading on the growth of a seagrass, Syringodium isoetifolium. Estuar. Coast. Shelf Sci. 2005, 64, 149–155. [Google Scholar] [CrossRef]
- Wong, M.C.; Vercaemer, B.M.; Griffiths, G. Response and recovery of eelgrass (Zostera marina) to chronic and episodic light disturbance. Estuaries Coasts 2020, 44, 312–324. [Google Scholar] [CrossRef]
- Longstaff, B.J.; Dennison, W.C. Seagrass survival during pulsed turbidity events: The effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquat. Bot. 1999, 65, 105–121. [Google Scholar] [CrossRef]
- Bite, J.S.; Campbell, S.J.; Mckenzie, L.J.; Coles, R.G. Chlorophyll fluorescence measures of seagrasses Halophila ovalis and Zostera capricorni reveal differences in response to experimental shading. Mar. Biol. 2007, 152, 405–414. [Google Scholar] [CrossRef]
- Lee, K.S.; Sang, R.P.; Kim, Y.K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. Ecol. 2007, 350, 144–175. [Google Scholar] [CrossRef]
- Serrano, O.; Mateo, M.; Renom, P. Seasonal response of Posidonia oceanica to light disturbances. Mar. Ecol. Prog. Ser. 2011, 423, 29–38. [Google Scholar] [CrossRef]
- Enríquez, S.; Pantoja-Reyes, N.I. Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 2005, 145, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Enríquez, S.; Marbà, N.; Duarte, C.M.; van Tussenbroek, B.I.; Reyes-Zavala, G. Effects of seagrass Thalassia testudinum on sediment redox. Mar. Ecol. Prog. 2001, 219, 149–158. [Google Scholar] [CrossRef]
- Dahl, M.; Deyanova, D.; Lyimo, L.D.; Näslund, J.; Samuelsson, G.S.; Mtolera, M.S.P.; Björk, M.; Gullström, M. Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow. J. Ecol. 2016, 104, 654–664. [Google Scholar] [CrossRef]
- Liu, S.L.; Jiang, Z.J.; Wu, Y.C.; Zhang, J.P.; Zhao, C.Y.; Huang, X.P. Mechanisms of sediment carbon sequestration in seagrass meadows and its responses to eutrophication (in Chinese). Chin. Sci. Bull. 2017, 62, 3309–3320. [Google Scholar] [CrossRef]
- Marbà, N.; Díaz-Almela, E.; Duarte, C.M. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 2014, 176, 183–190. [Google Scholar] [CrossRef]
- Trevathan-Tackett, S.M.; Wessel, C.; Cebrian, J.; Ralph, P.J.; Masqué, P.; Macreadie, P.I. Effects of small-scale, shading-induced seagrass loss on blue carbon storage: Implications for management of degraded seagrass ecosystems. J. Appl. Ecol. 2018, 55, 1351–1359. [Google Scholar] [CrossRef]
- Premarathne, C.; Jiang, Z.J.; He, J.; Fang, Y.; Chen, Q.M.; Cui, L.J.; Wu, Y.C.; Liu, S.L.; Zhao, C.Y.; Vijerathna, P.; et al. Low Light Availability Reduces the Subsurface Sediment Carbon Content in Halophila beccarii From the South China Sea. Front. Plant Sci. 2021, 12, 664060. [Google Scholar] [CrossRef]
- Macreadie, P.I.; York, P.H.; Sherman, C.; Keough, M.J.; Ross, D.J.; Ricart, A.M.; Smith, T.M. No detectable impact of small-scale disturbances on “blue carbon” within seagrass beds. Mar. Biol. 2014, 161, 2939–2944. [Google Scholar] [CrossRef]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, B.; Marbà, N.; et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef]
- Oakes, J.M.; Eyre, B.D. Transformation and fate of microphytobenthos carbon in subtropical, intertidal sediments: Potential for long-term carbon retention revealed by 13C-labeling. Biogeosciences 2014, 11, 1927–1940. [Google Scholar] [CrossRef]
- Martin, B.C.; Gleeson, D.; Statton, J.; Siebers, A.R.; Grierson, P.; Ryan, M.H.; Kendrick, G.A. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front. Microbiol. 2018, 8, 2667. [Google Scholar] [CrossRef] [PubMed]
- Mcmahon, K.; Lavery, P.S.; Mulligan, M. Recovery from the impact of light reduction on the seagrass Amphibolis griffithii, insights for dredging management. Mar. Pollut. Bull. 2011, 62, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, P.I.; Trevathan-Tackett, S.M.; Skilbeck, C.G.; Sanderman, J.; Curlevski, N.; Jacobsen, G.; Seymour, J.R. Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151537. [Google Scholar] [CrossRef] [PubMed]
Site | Control/lx | Single/lx | Intensity | Control/lx | Double/lx | Intensity |
---|---|---|---|---|---|---|
ZG1 | 76,000 | 28,300 | 62.76 | 78,400 | 6580 | 91.61 |
78,700 | 27,800 | 64.68 | 76,900 | 7000 | 90.90 | |
75,300 | 29,400 | 60.96 | 76,200 | 7800 | 89.76 | |
ZG2 | 56,500 | 18,500 | 67.26 | 51,800 | 2530 | 95.12 |
59,200 | 20,500 | 65.37 | 52,400 | 3310 | 93.68 | |
58,300 | 22,700 | 61.06 | 55,600 | 2890 | 94.80 | |
ZG3 | 36,900 | 14,500 | 60.70 | 25,800 | 2280 | 91.16 |
28,500 | 12,400 | 56.49 | 26,900 | 2560 | 90.48 | |
35,200 | 16,700 | 52.56 | 26,200 | 1680 | 93.59 | |
Average | —— | —— | 61.32 | —— | —— | 92.34 |
Period | Treatments | Leaf Length/cm | Leaf Width/cm | Leaf Number |
---|---|---|---|---|
S3 | CK | 34.98 ± 0.96 a | 1.65 ± 0.02 a | 4.34 ± 0.09 a |
MS | 29.78 ± 1.17 b | 1.47 ± 0.02 b | 3.60 ± 0.11 b | |
HS | 25.25 ± 1.16 c | 1.38 ± 0.02 c | 3.35 ± 0.11 b | |
S6 | CK | 54.98 ± 1.55 a | 1.84 ± 0.02 a | 6.63 ± 0.08 a |
MS | 22.79 ± 1.80 b | 1.49 ± 0.03 b | 5.00 ± 0.12 b | |
HS | 21.47 ± 1.40 b | 1.40 ± 0.02 c | 4.84 ± 0.12 b | |
R3 | CK | 24.31 ± 1.26 a | 1.75 ± 0.02 a | 5.41 ± 0.14 a |
MS | 19.12 ± 0.87 b | 1.50 ± 0.03 b | 4.23 ± 0.12 b | |
HS | 16.30 ± 0.91 b | 1.35 ± 0.03 c | 3.58 ± 0.12 c |
Period | Treatments | Photosynthetic Pigments (mg∙g−1) | |||
---|---|---|---|---|---|
Chl a | Chl b | Total Chl | Chl a/Chl b | ||
S3 | CK | 0.142 ± 0.016 a | 0.062 ± 0.007 a | 0.204 ± 0.022 a | 2.419 ± 0.206 a |
MS | 0.108 ± 0.010 a | 0.056 ± 0.004 a | 0.164 ± 0.014 a | 1.899 ± 0.094 b | |
HS | 0.125 ± 0.014 a | 0.049 ± 0.004 a | 0.175 ± 0.018 a | 2.495 ± 0.153 a | |
S6 | CK | 0.207 ± 0.012 a | 0.084 ± 0.005 a | 0.291 ± 0.018 a | 2.484 ± 0.036 a |
MS | 0.087 ± 0.008 b | 0.041 ± 0.004 b | 0.128 ± 0.011 b | 2.222 ± 0.083 b | |
HS | 0.082 ± 0.007 b | 0.039 ± 0.004 b | 0.121 ± 0.011 b | 2.196 ± 0.093 b | |
R3 | CK | 0.301 ± 0.024 a | 0.142 ± 0.019 a | 0.434 ± 0.032 a | 2.156 ± 0.341 a |
MS | 0.229 ± 0.019 b | 0.102 ± 0.014 a | 0.330 ± 0.022 b | 2.233 ± 0.205 a | |
HS | 0.230 ± 0.018 b | 0.100 ± 0.016 a | 0.334 ± 0.018 b | 2.539 ± 0.475 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Song, Y.; Wang, Y.; Fu, G.; Zhang, X. Effects of Shading on the Growth and Carbon Storage of Enhalus acoroides. Appl. Sci. 2023, 13, 6035. https://doi.org/10.3390/app13106035
Fu M, Song Y, Wang Y, Fu G, Zhang X. Effects of Shading on the Growth and Carbon Storage of Enhalus acoroides. Applied Sciences. 2023; 13(10):6035. https://doi.org/10.3390/app13106035
Chicago/Turabian StyleFu, Miao, Yanwei Song, Yang Wang, Guowei Fu, and Xiang Zhang. 2023. "Effects of Shading on the Growth and Carbon Storage of Enhalus acoroides" Applied Sciences 13, no. 10: 6035. https://doi.org/10.3390/app13106035
APA StyleFu, M., Song, Y., Wang, Y., Fu, G., & Zhang, X. (2023). Effects of Shading on the Growth and Carbon Storage of Enhalus acoroides. Applied Sciences, 13(10), 6035. https://doi.org/10.3390/app13106035