Directional Amplification at Rock Sites in Fault Damage Zones
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods of Analysis
3. Results
3.1. The Hayward Fault Case Study
3.2. The Greendale Fault Case Study
3.3. The Pernicana Fault Case Study
3.4. The Mattinata Fault Case Study
3.5. The Campo Imperatore Fault Case Study
3.6. The Val d’Agri Case Study
4. The Transversal Relation between Ground Motion Polarization and Velocity Anisotropy
5. Final Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonamassa, O.; Vidale, J.E. Directional site resonances observed from aftershocks of the 18 October Loma Prieta earthquake. Bull. Seism. Soc. Am. 1991, 81, 1945–1957. [Google Scholar]
- Lombardo, G.; Rigano, R. Amplification of ground motion in fault and fracture zones: Observations from the Tremestieri fault, Mt. Etna (Italy). J. Volc. Geoth. Res. 2006, 153, 167–176. [Google Scholar] [CrossRef]
- Martino, S.; Minutolo, A.; Paciello, A.; Rovelli, A.; Scarascia Mugnozza, G.; Verubbi, V. Evidence of Amplification Effects in Fault Zone Related to Rock Mass Jointing. Nat Hazards 2006, 39, 419–449. [Google Scholar] [CrossRef]
- Rigano, R.; Cara, F.; Lombardo, G.; Rovelli, A. Evidence of ground motion polarization on fault zones of Mount Etna volcano. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Di Giulio, G.; Cara, F.; Rovelli, A.; Lombardo, G.; Rigano, R. Evidences for strong directional resonances in intensely deformed zones of the Pernicana fault, Mount Etna, Italy. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Falsaperla, S.; Cara, F.; Rovelli, A.; Neri, M.; Behncke, B.; Acocella, V. Effects of the 1989 fracture system in the dynamics of the upper SE flank of Etna revealed by volcanic tremor data: The missing link? J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Ben-Zion, Y.; Aki, K. Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. Bull. Seism. Soc. Am. 1990, 80, 971–994. [Google Scholar] [CrossRef]
- Li, Y.L.; Ellsworth, G.W.; Thurber, C.H.; Malin, P.E.; Aki, K. Observations of fault zone trapped waves excited by explosions at the San Andreas fault, central California. Bull. Seism. Soc. Am. 1997, 87, 210–221. [Google Scholar] [CrossRef]
- Lewis, M.A.; Peng, Z.; Ben-Zion, Y.; Vernon, F.L. Shallow seismic trapping structure in the San Jacinto fault zone near Anza, California. Geophys. J. Int. 2005, 162, 867–881. [Google Scholar] [CrossRef]
- Mizuno, T.; Nishigami, K. Deep structure of the Mozumi-Sukenobu fault, central Japan, estimated from the subsurface array observation of fault zone trapped waves. Geophys. J. Int. 2006, 159, 622–642. [Google Scholar] [CrossRef]
- Spudich, P.; Olsen, K.B. Fault zone amplified waves as a possible seismic hazard along the Calaveras Fault in central California. Geophys. Res. Lett. 2001, 28, 2533–2536. [Google Scholar] [CrossRef]
- Calderoni, G.; Rovelli, A.; Di Giovambattista, R. Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: Evidence for a complex fault-induced site effect. Geophys. Res. Lett. 2010, 37, L24305. [Google Scholar] [CrossRef]
- Cultrera, G.; Rovelli, A.; Mele, G.; Azzara, R.; Caserta, A.; Marra, F. Azimuth dependent amplification of weak and strong ground motions within a fault zone, Nocera Umbra, Central Italy. J. Geophys. Res. 2003, 108, 2156–2170. [Google Scholar] [CrossRef]
- Peng, Z.; Ben-Zion, Y. Systematic analysis of crustal anisotropy along the Karadere Duzce branch of the North Anatolian fault. Geophys. J. Int. 2006, 159, 253–274. [Google Scholar] [CrossRef]
- Karabulut, H.; Bouchon, M. Spatial variability and non-linearity of strong ground motion near a fault. Geophys. J. Int. 2007, 170, 262–274. [Google Scholar] [CrossRef]
- Pischiutta, M. The Polarization of Horizontal Ground Motion: An Analysis of Possible Causes. Ph.D. Thesis, University of Bologna, Italy, 2010; 172p. Available online: http://amsdottorato.unibo.it/3106/ (accessed on 1 July 2022).
- Pischiutta, M.; Salvini, F.; Fletcher, J.; Rovelli, A.; Ben-Zion, Y. Horizontal polarization of ground motion in the Hayward fault zone at Fremont, California: Dominant fault-high-angle polarization and fault- induced cracks. Geophys. J. Int. 2012, 188, 1255–1272. [Google Scholar] [CrossRef]
- Di Giulio, G.; Amoroso, S.; Di Naccio, D.; Falcucci, E.; Gori, S.; Hailemikael, S.; Vassallo, M.; Ciampaglia, A.; De Luca, G.; Del Grosso, A.; et al. The Seismic Microzonation of San Gregorio Through a Multidisciplinary Approach. Seismic Amplification in a Stiff Site. In Engineering Geology for Society and Territory; Springer: Cham, Switzerland, 2005; Volume 5. [Google Scholar] [CrossRef]
- Di Naccio, D.; Vassallo, M.; Di Giulio, G.; Amoroso, S.; Cantore, L.; Hailemikael, S.; Falcucci, E.; Gori, S.; Milana, G. Seismic amplification in a fractured rock site. The case study of San Gregorio (L’Aquila, Italy). Phys. Chem. Earth 2017, 98, 90–106. [Google Scholar] [CrossRef]
- Hailemikael, S.; Lenti, L.; Martino, S.; Paciello, A.; Rossi, D.; Scarascia Mugnozza, G. Ground-motion amplification at the Colle di Roio ridge, central Italy: A combined effect of stratigraphy and topography. Geophys. J. Int. 2016, 206, 1–18. [Google Scholar] [CrossRef]
- Marzorati, S.; Ladina, C.; Falcucci, E.; Gori, S.; Saroli, M.; Ameri, G.; Galadini, F. Site effects “On the Rock”: The case study of Castelvecchio Subequo (L’Aquila, central Italy). Bull. Earthq. Eng. 2011, 9, 841–868. [Google Scholar] [CrossRef]
- Panzera, F.; Tortorici, G.; Romagnoli, G.; Marletta, G.; Catalano, S. Empirical evidence of orthogonal relationship between directional site effects and fracture azimuths in an active fault zone: The case of the Mt. Etna lower eastern flank. Eng. Geol. 2020, 279, 105900. [Google Scholar] [CrossRef]
- Panzera, F.; Halldorsson, B.; Vogfjord, K. Directional effects of tectonic fractures on ground motion site amplification from earthquake and ambient noise data: A case study in South Iceland. Soil Dyn. Earthq. Eng. 2017, 97, 143–154. [Google Scholar] [CrossRef]
- Panzera, F.; D’Amico, S.; Colica, E.; Viccaro, M. Ambient vibration measurements to support morphometric analysis of a pyroclastic cone. Bull. Volcanol. 2019, 81, 74. [Google Scholar] [CrossRef]
- Panzera, F.; Pischiutta, M.; Lombardo, G.; Monaco, C.; Rovelli, A. Wavefield Polarization in Fault Zones of the Western Flank of Mt. Etna: Observations and Fracture Orientation Modelling. Pure Appl. Geophys. 2014, 171, 3083–3097. [Google Scholar] [CrossRef]
- Pischiutta, M.; Fondriest, M.; Demurtas, M.; Magnoni, F.; Di Toro, G.; Rovelli, A. Structural control on the directional amplification of seismic noise (Campo Imperatore, central Italy). Earth Planet. Sci. Lett. 2017, 471, 10–18. [Google Scholar] [CrossRef]
- Burjanek, J.; Moore, J.R.; Yugsi Molina, F.X.; Faeh, D. Instrumental evidence of normal mode rock slope vibration. Geophys. J. Int. 2012, 188, 559–569. [Google Scholar] [CrossRef]
- Burjanek, J.; Gassner-Stamm, G.; Poggi, V.; Moore, J.R.; Fah, D. Ambient vibration analysis of an unstable mountain slope. Geophys. J. Int. 2010, 180, 820–828. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Wasowski, J. Directivity of slope dynamic response to seismic shaking. Geophys. Res. Lett. 2007, 34, L12301. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Wasowski, J.; Muscillo, S. New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Nat. Hazards Earth Syst. Sci. 2013, 13, 2075–2087. [Google Scholar] [CrossRef]
- Moore, J.; Gischig, V.; Burjanek, J.; Loew, S.; Faeh, D. Site effects in unstable rock slopes: Dynamic behavior of the Randa instability (Switzerland). Bull. Seism. Soc. Am. 2011, 101, 3110–3116. [Google Scholar] [CrossRef]
- Moore, J.R.; Geimer, P.R.; Finnegan, R.; Thorne, M.S. Use of Seismic Resonance Measurements to Determine the Elastic Modulus of Freestanding Rock Masses. Rock Mech. Rock Eng. 2008, 51, 3937–3944. [Google Scholar] [CrossRef]
- Pischiutta, M.; Pastori, M.; Improta, L.; Salvini, F.; Rovelli, A. Orthogonal relation between wavefield polarization and fast S-wave direction in the Val d’Agri region: An integrating method to investigate rock anisotropy. J. Geophys. Res. Solid Earth 2014, 119, 1–13. [Google Scholar] [CrossRef]
- Pischiutta, M.; Savage, M.; Holt, R.; Salvini, F. Fracture-related wavefield polarization and seismic anisotropy across the Greendale Fault. J. Geophys. Res. Solid Earth 2015, 120, 7048–7067. [Google Scholar] [CrossRef]
- Di Giulio, G.; Punzo, M.; Bruno, P.P.; Cara, F.; Rovelli, A. Using a vibratory source at Mt. Etna (Italy) to investigate the wavefield polarization at Pernicana Fault. Near Surf. Geophys. 2019, 17, 313–329. [Google Scholar] [CrossRef]
- Borcherdt, R.D. Effects of local geology on ground motion near San Francisco Bay. Bull. Seism. Soc. Am. 1970, 60, 29–61. [Google Scholar]
- Tucker, B.E.; King, J.L.; Hatzfeld, D.; Nersesov, I.L. Observations of hard-rock site effects. Bull. Seim. Soc. Am. 1987, 74, 121–136. [Google Scholar] [CrossRef]
- Lermo, J.; Chavez-Garcia, F.J. Site effect evaluation using spectral ratios with only one station. Bull. Seismol. Soc. Am. 1993, 83, 1574–1594. [Google Scholar] [CrossRef]
- Field, E.H.; Jacob, K.H. A comparison and test of various site response estimation techniques, including three that are not reference site dependent. Bull. Seism. Soc. Am. 1995, 85, 1127–1143. [Google Scholar]
- Faeh, D.; Kind, F.; Giardini, D. A theoretical investigation of average H/V ratios. Geophys. J. Int. 2001, 145, 535–549. [Google Scholar] [CrossRef]
- Guo, Z.; Aydin, A. A modified HVSR method to evaluate site effect in Northern Mississippi considering ocean wave climate. Eng. Geol. 2016, 200, 104–113. [Google Scholar] [CrossRef]
- Guo, Z.; Xue, M.; Aydin, A.; Huang, Y. Locating the Source Regions of the Single and Double-Frequency Microseisms to Investigate the Source Effects on HVSR in Site Effect Analysis. J. Earth Sci. 2022, 33, 1219–1232. [Google Scholar] [CrossRef]
- Spudich, P.; Hellweg, M.; Lee, W.H.K. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions. Bull. Seismol. Soc. Am. 1996, 86, S193–S208. [Google Scholar] [CrossRef]
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. [Google Scholar] [CrossRef]
- Kanasewich, E.R. Time Sequence Analysis in Geophysics; University of Alberta Press: Edmonton, AB, Canada, 1980; 477p. [Google Scholar]
- Jurkevics, A. Polarization analysis of three component array data. Bull. Seismol. Soc. Am. 1988, 78, 1725–1743. [Google Scholar]
- La Rocca, M.; Galluzzo, D.; Saccorotti, G.; Tinti, S.; Cimini, G.B.; Del Pezzo, E. Seismic signals associated with landslides and with a tsunami at Stromboli volcano, Italy. Bull. Seismol. Soc. Am. 2004, 94, 1850–1867. [Google Scholar] [CrossRef]
- Napolitano, F.; Gervasi, A.; La Rocca, M.; Guerra, I.; Scarpa, R. Site effects in the Pollino region from spectral and polarization analyses of seismic noise and earthquakes. Bull. Seismol. Soc. Am. 2018, 108, 309–321. [Google Scholar] [CrossRef]
- Formisano, L.A.; La Rocca, M.; Del Pezzo, E.; Galluzzo, D.; Fischione, C.; Scarpa, R. Topography effects in the polarization of earthquake signals: A comparison between surface and deep recordings. Boll. Geofis. Teor. Appl. 2012, 53, 471–484. [Google Scholar] [CrossRef]
- Vidale, J.E. Complex polarization analysis of particle motion. Bull. Seismol. Soc. Am. 1986, 76, 1393–1405. [Google Scholar]
- Pischiutta, M.; Petrosino, S.; Nappi, R. Directional amplification and ground motion polarization in Casamicciola area (Ischia volcanic island) after the 21 August 2017 Md 4.0 earthquake. Front. Earth Sci. 2022, 10, 999222. [Google Scholar] [CrossRef]
- Kelson, K.I.; Simpson, G.D. Late Quaternary deformation of the Southern East Bay Hills, Alameda County, California. Am. Assoc. Petrol. Geol. Bull. 1995, 79, 590. [Google Scholar]
- Graymer, R.W.; Sarna-Wojcicki, A.M.; Walker, J.P.; McLaughlin, R.J.; Fleck, R.J. Controls on timing and amount of right-lateral offset on the East Bay fault system, San Francisco Bay region, California. Bull. Geol. Soc. Am. 2002, 114, 1471–1479. [Google Scholar] [CrossRef]
- Lienkaemper, J.J.; Galehouse, J.S.; Simpson, R.W. Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake. Geophys. Res. Lett. 2001, 28, 2265–2268. [Google Scholar] [CrossRef]
- Savage, J.C.; Lisowski, M. Inferred depth of creep on the Hayward fault, central California. J. Geophys. Res. 1993, 98, 787–793. [Google Scholar] [CrossRef]
- Bakun, W.H. Seismic activity of the San Francisco Bay region. Bull. Seismol. Soc. Am. 1999, 89, 764–784. [Google Scholar] [CrossRef]
- Yu, E.; Segall, P. Slip in the 1868 Hayward earthquake from the analysis of historical triangulation data. J. Geophys. Res. 1996, 101, 16101–16118. [Google Scholar] [CrossRef]
- Spudich, P.; Xu, L. Documentation of software package ISOSYN: Isochrone integration programs for earthquake ground motion calculations. In CD Accompanying IASPEI Handbook of Earthquake & Engineering Seismology; Academic Press: Cambridge, MA, USA, 2003; 72p. [Google Scholar]
- Salvini, F.; Billi, A.; Wise, D.U. Strike-slip fault-propagation cleavage in carbonate rocks: The Mattinata Fault Zone, Southern Apennines, Italy. J. Struct. Geol. 1999, 21, 1731–1749. [Google Scholar] [CrossRef]
- Beavan, J.; Fielding, E.; Motagh, M.S.; Samsonov, S.; Donnelly, N. Fault location and slip distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, earthquake from geodetic data. Seismol. Res. Lett. 2001, 82, 789–799. [Google Scholar] [CrossRef]
- Gledhill, K.; Ristau, J.; Reyners, M.; Fry, B.; Holden, C. The Darfield (Canterbury, New Zealand) Mw 7.1 earthquake of September 2010: A preliminary seismological report. Seismol. Res. Lett. 2001, 82, 379–386. [Google Scholar] [CrossRef]
- Syracuse, E.M.; Thurber, C.H.; Rawles, C.J.; Savage, M.K.; Bannister, S. High-resolution relocation of aftershocks of the Mw 7.1 Darfield, New Zealand, earthquake and implications for fault activity. J. Geophys. Res. Solid Earth 2013, 118, 4184–4195. [Google Scholar] [CrossRef]
- Kaiser, A.; Holden, C.; Beavan, J.; Beetham, D.; Benites, R.; Celentano, A.; Collett, D.; Cousins, J.; Cubrinovski, M.; Dellow, G.; et al. The Mw 6.2 Christchurch earthquake of February 2011: Preliminary report. N. Z. J. Geol. Geophys. 2012, 55, 67–90. [Google Scholar] [CrossRef]
- Van Dissen, R. Surface rupture displacement on the Greendale Fault during the Mw 7.1 Darfield (Canterbury) earthquake, New Zealand, and its impact on man-madestructures. In Proceedings of the Ninth Pacific Conference on Earthquake Engineering: Building an Earthquake-Resilient Society, Auckland, New Zealand, 14–16 April 2011; pp. 186–193. [Google Scholar]
- Forsyth, P.J.; Barrell, D.J.A.; Jongens, R. Geology of the Christchurch Area: Institute of Geological and Nuclear Sciences Geological Map, 2008, Map 16 Lower Hutt New Zealand, Scale 1:250,000, 1 Sheet, 67 p. Text. Available online: https://natlib.govt.nz/records/20620551?search%5Bi%5D%5Bsubject%5D=Geology+--+New+Zealand+--+Canterbury&search%5Bpath%5D=items (accessed on 1 July 2022).
- Guidotti, R.; Stupazzini, M.; Smerzini, C.; Paolucci, R.; Ramieri, P. Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 MW 6.2 Christchurch earthquake. Seismol. Res. Lett. 2011, 82, 767–782. [Google Scholar] [CrossRef]
- Ghisetti, F.C.; Sibson, R.H. Compressional reactivation of E–W inherited normal faults in the area of the 2010–2011 Canterbury earthquake sequence, N.Z.J. Geol. Geophys. 2012, 55, 177–184. [Google Scholar] [CrossRef]
- Savage, M.; Lin, F.-C.; Townend, J. Ambient noise cross-correlation observations of fundamental and higher-mode Rayleigh wave propagation governed by basement resonance. Geophys. Res. Lett. 2013, 40, 3556–3561. [Google Scholar] [CrossRef]
- Syracuse, E.M.; Holt, R.A.; Savage, M.K.; Johnson, J.H.; Thurber, C.H.; Unglert, K.; Allan, K.N.; Karalliyadda, S.; Henderson, M. Temporal and spatial evolution of hypocentres and anisotropy from the Darfield aftershock sequence: Implications for fault geometry and age. N. Z. J. Geol. Geophys. 2012, 55, 287–293. [Google Scholar] [CrossRef]
- Holt, R.A.; Savage, M.K.; Townend, J.; Syracuse, E.M.; Thurber, C.H. Crustal stress and fault strength in the Canterbury Plains, New Zealand. Earth Planet. Sci. Lett. 2012, 383, 173–181. [Google Scholar] [CrossRef]
- Neri, M.; Acocella, V.; Behncke, B. The role of the Pernicana Fault System in the spreading of Mt. Etna (Italy) during the 2002–2003 eruption. Bull. Volcanol. 2004, 66, 417–430. [Google Scholar] [CrossRef]
- Obrizzo, F.; Pingue, F.; Troise, C.; De Natale, G. Coseismic displacements and creeping along the Pernicana fault (Etna, Italy) in the last 17 years: A detailed study of a tectonic structure on a volcano. J. Volcanol. Geotherm. Res. 2001, 109, 109–131. [Google Scholar] [CrossRef]
- Tibaldi, A.; Groppelli, G. Volcano-tectonic activity along structures of the unstable NE flank of Mt. Etna (Italy) and their possible origin. J. Volc. Geotherm. Res. 2002, 115, 277–302. [Google Scholar] [CrossRef]
- Milana, G.; Rovelli, A.; De Sortis, A.; Calderoni, G.; Coco, G.; Corrao, M.; Marsan, P. The role of long-period ground motions on magnitude and damage of volcanic earthquakes on Mt. Etna, Italy. Bull. Seism. Soc. Am. 2008, 98, 2724–2738. [Google Scholar] [CrossRef]
- Neri, M.; Garduno, V.H.; Pasquare, G.; Rasa, R. Studio strutturale e modello cinematico della Valle del Bove e del settore nord-orientale etneo. Acta Vulcanol. 1991, 1, 17–24. (In Italian) [Google Scholar]
- Froger, J.L.; Merle, O.; Briole, P. Active spreading and regional extension at Mount Etna imaged by SAR interferometry. Earth Planet. Sci. Lett. 2001, 187, 245–258. [Google Scholar] [CrossRef]
- Bonforte, A.; Bonaccorso, A.; Guglielmino, F.; Palano, M.; Puglisi, G. Feeding system and magma storage beneath Mt. Etna as revealed by recent inflation/deflation cycles. J. Geophys. Res. 2008, 113, B05406. [Google Scholar] [CrossRef]
- Alparone, S.; Barberi, G.; Bonforte, A.; Maiolino, V.; Ursino, A. Evidence of multiple strain fields beneath the eastern flank of Mt. Etna volcano (Sicily, Italy) deduced from seismic and geodetic data during 2003–2004. Bull. Volcanol. 2011, 7, 869–885. [Google Scholar] [CrossRef]
- Pischiutta, M.; Rovelli, A.; Salvini, F.; Di Giulio, G.; Ben-Zion, Y. Directional resonance variations across the Pernicana fault, Mt. Etna, in relation to brittle deformation fields. Geophys. J. Int. 2013, 193, 986–996. [Google Scholar] [CrossRef]
- Tondi, E.; Piccardi, L.; Cacon, S.; Kontny, B.; Cello, G. Structural and time constraints for dextral shear along the seismogenic Mattinata Fault (Gargano, southern Italy. J. Geodyn. 2005, 40, 134–152. [Google Scholar] [CrossRef]
- Pischiutta, M.; Cianfarra, P.; Anselmi, M.; Salvini, F.; Rovelli, A. Ground Motion Polarization in the Damage Zone of the Active, Strike-Slip Mattinata Fault, Southern Italy. In AGU Fall Meeting Abstracts; 2013; p. T53D-2617. Available online: https://ui.adsabs.harvard.edu/abs/2013AGUFM.T53D2617P/abstract (accessed on 1 July 2022).
- Wathelet, M.; Jongmans, D.; Ohrnberger, M. Direct inversion of spatial autocorrelation curves with the neighborhood algorithm. Bull. Seismol. Soc. Am. 2005, 95, 1787–1800. [Google Scholar] [CrossRef]
- Pischiutta, M.; Cianfarra, P.; Salvini, F.; Cara, F.; Vannoli, P. A systematic analysis of directional site effects at stations of the Italian seismic network to test the role of local topography. Geophys. J. Int. 2018, 214, 635–650. [Google Scholar] [CrossRef]
- Demurtas, M.; Fondriest, M.; Balsamo, F.; Clemenzi, L.; Storti, F.; Bistacchi, A.; Di Toro, G. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy). J. Struct. Geol. 2016, 90, 185–206. [Google Scholar] [CrossRef]
- Mamada, Y.; Kuwahara, Y.; Ito, H.; Takenaka, H. Discontinuity of the Mozumi–Sukenobu fault low-velocity zone, central Japan, inferred from 3-D finite-difference simulation of fault zone waves excited by explosive sources. Tectonophysics 2004, 378, 209–222. [Google Scholar] [CrossRef]
- Maschio, L.; Ferranti, L.; Burrato, P.F. Active extension in Val d’Agri area, Southern Apennines, Italy: Implications for the geometry of the seismogenic belt. Geophys. J. Int. 2005, 162, 591–609. [Google Scholar] [CrossRef]
- Valoroso, L.; Improta, L.; Chiaraluce, L.; Di Stefano, R.; Ferranti, L.; Govoni, A.; Chiarabba, C. Active faults and induced seismicity in the Val d’Agri area (Southern Apennines, Italy). Geophys. J. Int. 2009, 178, 488–502. [Google Scholar] [CrossRef]
- Valoroso, L.; Improta, L.; De Gori, P.; Chiarabba, C. Upper crustal structure, seismicity and pore pressure variations in an extensional seismic belt through 3D and 4D Vp and Vp/Vs models: The example of the Val d’Agri area (Southern Italy). J. Geophys. Res. 2011, 116, B07303. [Google Scholar] [CrossRef]
- Boness, N.L.; Zoback, M.D. Mapping stress and structurally controlled crustal shear velocity anisotropy in California. Geology 2006, 34, 825–828. [Google Scholar] [CrossRef]
- Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L. Quantitative analysis of fault zone waves in the rupture zone of the Landers, 1992, California earthquake: Evidence for a shallow trapping structure. Geophys. J. Int. 2003, 155, 1021–1041. [Google Scholar] [CrossRef]
- Pastori, M.; Piccinini, D.; Margheriti, L.; Improta, L.; Valoroso, L.; Chiaraluce, L.; Chiarabba, C. Stress aligned cracks in the upper crust of the Val d’Agri region as revealed by shear wave splitting. Geophys. J. Int. 2009, 179, 601–614. [Google Scholar] [CrossRef]
- Pastori, M.; Piccinini, D.; Valoroso, L.; Wuestefeld, A.; Zaccarelli, L.; Bianco, F.; Kendall, M.; Di Bucci, D.; Margheriti, L.; Barchi, M.R. Crustal fracturing field and presence of fluid as revealed by seismic anisotropy: Case histories from seismogenic areas in the Apennines (Italy). Boll. Geofis. Teor. Appl. 2012, 53, 417–433. [Google Scholar] [CrossRef]
- Felicetta, C.; Lanzano, G.; D’Amico, M.; Puglia, R.; Luzi, L.; Pacor, F. Ground motion model for reference rock sites in Italy. Soil Dyn. Earthq. Eng. 2009, 110, 276–283. [Google Scholar] [CrossRef]
- Lanzano, G.; Felicetta, C.; Pacor, F.; Spallarossa, D.; Traversa, P. Methodology to identify the reference rock sites in regions of medium-to-high seismicity: An application in Central Italy. Geophys. J. Int. 2020, 222, 2053–2067. [Google Scholar] [CrossRef]
- Bonilla, L.F.; Steidl, J.H.; Tumarkin, A.G.; Archuleta, R.J. Site amplification in the San Fernando Valley, California: Variability of site-effect estimation using the S-wave, coda, and H/V meth. Bull. Seism. Soc. Am. 1997, 87, 710–730. [Google Scholar] [CrossRef]
- Cadet, H.; Bard, P.-Y.; Marek, A.R. Defining a Standard Rock Site: Propositions Based on the KiK-net Database. Bull. Seism. Soc. Am. 2010, 100, 172–195. [Google Scholar] [CrossRef]
- Malagnini, L.; Mayeda, K.; Akinci, A.; Bragato, P.L. Estimating Absolute Site Effects. Bull. Seism. Soc. Am. 2004, 94, 1343–1352. [Google Scholar] [CrossRef]
- Yu, J.; Haines, J. The Choice of Reference Sites for Seismic Ground Amplification Analyses: Case Study at Parkway, New Zealand. Bull. Seismol. Soc. Am. 2003, 93, 713–723. [Google Scholar] [CrossRef]
- Luzi, L.; Pacor, F.; Lanzano, G.; Felicetta, C.; Puglia, R.; D’Amico, M. 2016–2017 Central Italy seismic sequence: Strong-motion data analysis and design earthquake selection for seismic microzonation purposes. Bull. Earthq. Eng. 2019, 18, 5533–5551. [Google Scholar] [CrossRef]
- Burjánek, J.; Edwards, B.; Fäh, D. Empirical evidence of local seismic effects at sites with pronounced topography: A systematic approach. Geophys. J. Int. 2014, 197, 608–619. [Google Scholar] [CrossRef]
- Kaiser, A.E.; Massey, C.; Pischiutta, M.; Fry, B.; Nicol, A. New Geotechnical Maps and 3D Basin Velocity Model for Central Wellington, New Zealand, Following the Mw 7.8 Kaikoura Earthquake: Explaining Site Effects in a Shallow, Steep-Sided Sedimentary Basin SSA meeting. Seismol. Res. Lett. 2020, 91, 1095–1338. [Google Scholar] [CrossRef]
Station | Network | Latitude | Longitude | Operating Period | |
---|---|---|---|---|---|
ND1 | GS | 37,57,333 | −121,992,523 | 27/04/06 | 13/06/13 |
ND2 | GS | 37,573,181 | −121,989,609 | 24/04/06 | 12/06/13 |
ND3 | GS | 37,57,309 | −121,985,939 | 24/04/06 | 13/06/13 |
ND4 | GS | 37,57,505 | −121,982,491 | 25/04/04 | 12/06/13 |
ND5 | GS | 37,575,008 | −121,979,439 | 27/04/06 | 11/06/13 |
ND6 | GS | 37,575,729 | −121,987,091 | 22/07/08 | 12/06/13 |
ND7 | GS | 37,577,751 | −121,988,663 | 22/07/08 | 13/06/13 |
NDR | GS | 37,583,462 | −121,992,188 | 22/07/08 | 12/06/13 |
C002 | NC | 37,558,453 | −122,034,508 | 09/03/09 | 01/01/00 |
C015 | NC | 37,559,444 | −121,993,729 | 23/06/09 | 01/01/00 |
C030 | NC | 37,154,915 | −121,609,894 | 07/10/09 | 31/12/99 |
C048 | NC | 37,575,089 | −121,991,661 | 25/08/10 | 01/01/00 |
C060 | NC | 37,58,482 | −122,027,122 | 08/03/12 | 01/01/00 |
CSU1 | NC | 37,643,032 | −121,940,201 | 12/09/92 | 01/01/00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pischiutta, M.; Rovelli, A.; Salvini, F.; Fletcher, J.B.; Savage, M.K. Directional Amplification at Rock Sites in Fault Damage Zones. Appl. Sci. 2023, 13, 6060. https://doi.org/10.3390/app13106060
Pischiutta M, Rovelli A, Salvini F, Fletcher JB, Savage MK. Directional Amplification at Rock Sites in Fault Damage Zones. Applied Sciences. 2023; 13(10):6060. https://doi.org/10.3390/app13106060
Chicago/Turabian StylePischiutta, Marta, Antonio Rovelli, Francesco Salvini, Jon B. Fletcher, and Martha K. Savage. 2023. "Directional Amplification at Rock Sites in Fault Damage Zones" Applied Sciences 13, no. 10: 6060. https://doi.org/10.3390/app13106060
APA StylePischiutta, M., Rovelli, A., Salvini, F., Fletcher, J. B., & Savage, M. K. (2023). Directional Amplification at Rock Sites in Fault Damage Zones. Applied Sciences, 13(10), 6060. https://doi.org/10.3390/app13106060