Volatile Organic Compounds Determination from Intestinal Polyps and in Exhaled Breath by Gas Chromatography–Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Polyp Characteristics
2.2. Tissues (Colonic Adenomatous Polypoid Lesion and Normal Mucosa) Analysis
2.2.1. Chemicals and SPME Sampling Device
2.2.2. SPME VOCs Extraction
2.2.3. GC-MS Apparatus and Analysis Experimental Conditions
2.2.4. Linear Regression Analysis, Limits of Detection (LOD), and Quantification (LOQ)
2.3. Analysis of the Exhaled Breath VOCs
2.3.1. Breath Sampling and Characterization
2.3.2. Linear Regression Analysis, LOD and LOQ
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zambonin, C.; Aresta, A. Review: Recent applications of solid phase microextraction coupled to liquid chromatography. Separations 2021, 8, 34. [Google Scholar] [CrossRef]
- Boiko, B. Solid-phase microextraction: A fit-for-purpose technique in biomedical analysis. Anal. Bioanal. Chem. 2022, 414, 7005–7013. [Google Scholar]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of polyphenols and vitamins in wine-making by-products by supercritical fluid extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Aresta, A.; Di Grumo, F.; Zambonin, C. Determination of major isoflavones in soy drinks by solid-phase micro extraction coupled to liquid chromatography. Food Anal. Methods 2016, 9, 925–933. [Google Scholar] [CrossRef]
- De Vietro, N.; Aresta, A.; Rotelli, M.T.; Zambonin, C.; Lippolis, C.; Picciariello, A.; Altomare, D.F. Relationship between cancer tissue derived and exhaled volatile organic compound from colorectal cancer patients. Preliminary results. J. Pharm. Biomed. Anal. 2020, 180, 113055–113065. [Google Scholar] [CrossRef] [PubMed]
- Musteata, F.; Musteata, M.; Pawliszyn, J. Fast in vivo microextraction: A new tool for clinical analysis. Clin. Chem. 2006, 52, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Piri-Moghadam, H.; Ahmadi, F.; Gómez-Ríos, G.A.; Boyacı, E.; Reyes-Garcés, N.; Aghakhani, A.; Bojko, B.; Pawliszyn, J. Fast quantitation of target analytes in small volumes of complex samples by matrix-compatible solid-phase microextraction devices. Angew. Chem. Int. Ed. Engl. 2016, 55, 7510–7514. [Google Scholar] [CrossRef]
- Jaroch, K.; Taczyńska, P.; Czechowska, M.; Bogusiewicz, J.; Łuczykowski, K.; Burlikowska, K.; Bojko, B. One extraction tool for in vitro-in vivo extrapolation? SPME-based metabolomics of in vitro 2D, 3D, and in vivo mouse melanoma models. J. Pharm. Anal. 2021, 11, 667–674. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics. Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef]
- Armstrong, H.; Bording-Jorgensen, M.; Wine, E. Review: The multifaceted roles of diet, microbes, and metabolites in cancer. Cancers 2021, 13, 767. [Google Scholar] [CrossRef] [PubMed]
- Aarons, C.B.; Shanmugan, S.; Bleier, J.I.S. Management of malignant colon polyps: Current status and controversies. World J. Gastroenterol. 2014, 20, 16178–16183. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.F.; Porcelli, F.; Picciariello, A.; Pinto, M.; Di Lena, M.; Caputi Iambrenghi, O.; Ugenti, I.; Guglielmi, A.; Vincenti, L.; De Gennaro, G. The use of the PEN3 e-nose in the screening of colorectal cancer and polyps. Tech. Coloproctol. 2016, 20, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.F.; Picciariello, A.; Rotelli, M.T.; De Fazio, M.; Aresta, A.M.; Zambonin, C.G.; Vincenti, L.; Trerotoli, P.; De Vietro, N. Chemical signature of colorectal cancer: Case–control study for profiling the breath print. BJS Open 2020, 4, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- De Vietro, N.; Aresta, A.M.; Picciariello, A.; Rotelli, M.T.; Zambonin, C. Determination of vocs in surgical resected tissues from colorectal cancer patients by solid phase microextraction coupled to gas chromatography–mass spectrometry. Appl. Sci. 2021, 11, 6910. [Google Scholar] [CrossRef]
- Klemenz, A.C.; Meyer, J.; Ekat, K.; Bartels, J.; Traxler, S.; Schubert, J.K.; Kamp, G.; Miekisch, W.; Peters, K. Differences in the emission of volatile organic compounds (vocs) between non-differentiating and adipogenically differentiating mesenchymal stromal/stem cells from human adipose tissue. Cells 2019, 8, 697. [Google Scholar] [CrossRef]
- Berthe-Corti, L.; Fetzner, S. Bacterial metabolism of n-alkanes and ammonia under oxic, suboxic and anoxic conditions. Acta Biotechnol. 2002, 22, 299–336. [Google Scholar] [CrossRef]
- Zimmermann, D.; Hartmann, M.; Moyer, M.P.; Nolte, J.; Baumbach, J.I. Determination of volatile products of human colon cell line metabolism by GC/MS analysis. Metabolomics 2007, 3, 13–17. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Xiao, H.M.; Zhan, J.T.; Yuan, B.F.; Feng, Y.Q. Simultaneous determination of indole metabolites of tryptophan in rat feces by chemical labeling assisted liquid chromatography-tandem mass spectrometry. Chin. Chem. Lett. 2022, 33, 4746–4749. [Google Scholar] [CrossRef]
- Morais, L.H.; Schreiber, H.L.T.; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 2021, 19, 241–255. [Google Scholar] [CrossRef]
- Michałowicz, J.; Duda, W. Phenols—Sources and Toxicity. Pol. J. Environ. Stud. 2007, 16, 347–362. [Google Scholar]
- Jh, S.K.; Hayashi, K. Molecular structural discrimination of chemical compounds in body odor using their GC–MS chromatogram and clustering methods. Int. J. Mass Spectrom. 2017, 423, 1–14. [Google Scholar] [CrossRef]
Demographics and Co-Morbidities of Adenomatous Colonic Polypoid Lesion-Affected Patients (n = 7) | |
---|---|
Mean Age (years) | 63 |
Sex ratio (M:F) | 5:2 |
Hypertension | 2 |
Diabetes | 0 |
Hypothyroidism | 0 |
Smoker | 1 |
Polyp characteristics | |
Polyp size | 2.0 ± 0.5 cm |
Hystology | 7 adenomatous polyps |
Grading | 2 moderate and 7 severe dysplasia |
# | RT (min) | Compound | Characteristic Ions (m/z) | Match | Prob. (%) | Standard Identity Confirmation | Frequency (%) | |
---|---|---|---|---|---|---|---|---|
HS | DI | |||||||
1 | 2.02 ± 0.04 | Dimethyl chloroacetal | 47 | 782 | 75.5 | 3.1 | 3.1 | |
2 | 2.21 ± 0.09 | Acetaldehyde oxime | 14, 59 | 962 | 37.3 | 12.5 | 28.1 | |
3 | 3.03 ± 0.02 | 2-Butanone,4-hydroxy | 43, 61 | 674 | 39.1 | 3.1 | 0 | |
4 | 3.30 ± 0.08 | 1-Butanol | 41, 56 | 827 | 40.0 | 5.6 | 3.1 | |
5 | 5.54 ± 0.05 | Acetal | 73, 103 | 849 | 77.0 | 12.5 | 6.3 | |
6 | 6.06 ± 0.07 | 1-Butanol,3-methyl | 41, 55 | 867 | 20.5 | 0 | 3.1 | |
7 | 6.19 ± 0.09 | Disulfide, dimethyl | 45, 79 | 939 | 97.1 | 9.4 | 12.5 | |
8 | 6.84 ± 0.07 | Methylbenzene | 91 | 979 | 60 | yes | 93.8 | 96.9 |
9 | 8.82 ± 0.08 | Ethylbutanoate | 43, 71 | 877 | 90.0 | 3.1 | 3.1 | |
10 | 8.98 ± 0.07 | Ethyl 2-methyl butanoate | 57, 102 | 851 | 76.8 | 18.8 | 3.1 | |
11 | 9.10 ± 0.08 | Ethyl 3-methyl butanoate | 88, 115 | 824 | 88.5 | 12.5 | 3.1 | |
12 | 9.29 ± 0.09 | Ethylbenzene | 91, 106 | 954 | 71.6 | yes | 68.8 | 31.3 |
13 | 9.53 ± 0.10 | xylene | 91, 106 | 908 | 61.5 | yes | 46.3 | 3.1 |
14 | 10.07 ± 0.09 | xylene | 91, 106 | 788 | 30.2 | yes | 46.9 | 9.4 |
15 | 10.22 ± 0.09 | Pentanoic acid, ethylester | 57, 101 | 812 | 89.2 | 0 | 3.1 | |
16 | 10.71 ± 0.09 | Oxime, methoxy-phenyl | 133, 151 | 813 | 84.2 | 68.8 | 96.9 | |
17 | 11.78 ± 0.09 | Dimethyl trisulfide | 79, 126 | 849 | 96.9 | 12.5. | 6.3 | |
18 | 11.93 ± 0,09 | Benzaldehyde | 77, 106 | 930 | 92 | yes | 18.8 | 65.6 |
19 | 12.12 ± 0.09 | Phenol | 66, 94 | 984 | 88 | yes | 31.3 | 62.5 |
20 | 12.29 ± 0.08 | Octanal | 43, 56 | 888 | 60 | yes | 9.4 | 59.4 |
21 | 12.52 ± 0.08 | 1-Hexanol, 2-ethyl- | 57 | 829 | 13.0 | 21.9 | 31.3 | |
22 | 12.74 ± 0.09 | Isooctanol | 55, 112 | 800 | 20.3 | 21.9 | 12.5 | |
23 | 13.47 ± 0.09 | Nonanol | 57, 69 | 827 | 11.1 | yes | 25.0 | 25.0 |
24 | 14.05 ± 0.09 | Nonanal | 41 | yes | 3.1 | 3.1 | ||
25 | 15.11 ± 0.08 | Octanoic acid | 60, 144 | 781 | 30.9 | yes | 12.5 | 9.4 |
26 | 15.31 ± 0.08 | Decanal | 43, 138 | yes | 31.3 | 15.6 | ||
27 | 15.63 ± 0.08 | Dodecane | 43, 170 | 956 | 49 | yes | 25.0 | 9.4 |
28 | 16.11 ± 0.09 | Benzenepropanol | 117, 136 | 909 | 60.0 | 6.3 | 18.8 | |
29 | 16.61 ± 0.09 | Triethanolamine | 118 | 900 | 67.0 | 0 | 6.3 | |
30 | 16.86 ± 0.09 | Undecano | 57, 156 | 908 | 44 | yes | 21.9 | 3.1 |
31 | 17.07 ± 0.08 | Indolo | 117 | 982 | 70 | yes | 40.6 | 62.5 |
32 | 18.39 ± 0.09 | Tetradecane | 57, 198 | 934 | 53 | yes | 25.0 | 12.5 |
Compounds | Equation | R2 | Normal Mucosa Range (mg/mL) | Adenomatous Polypoid Lesion Range (mg/mL) |
---|---|---|---|---|
Benzaldehyde | Y = 1912X + 456 | 0.9995 | nd-1.43 ± 0.62 | nd-1.60 ± 0.70 |
Ethylbenzene | Y = 2358X + 2998 | 0.9988 | nd-1.52 ± 0.23 | nd-0.96 ± 0.12 |
Indole | Y = 807X + 408 | 0.9995 | nd-7.03 ± 1.05 | nd-13.58 ± 1.12 |
Methylbenzene | Y = 17,243X + 1807 | 0.9990 | nd-1.29 ± 0.16 | nd-4.95 ± 0.11 |
Phenol | Y = 861X + 734 | 0.9902 | nd-3.45 ± 0.05 | nd-3.11 ± 0.04 |
Octanal | Y = 2090X + 597 | 0.9998 | nd-0.78 ± 0.30 | nd-0.27 ± 0.13 |
# | RT (min) a | Common Compound Name | Match (%) | Probability (%) | Standard Identity Confirmation b |
---|---|---|---|---|---|
1 | 5.71 ± 0.05 | Carbon dioxide | 891 | 90 | |
2 | 6.04 ± 0.02 | Unidentified | |||
3 | 6.45 ± 0.06 | 2,4-Dimethyl pentane | 930 | 91 | |
4 | 6.52 ± 0.07 | Hexene | 879 | 89 | |
5 | 6.66 ± 0.08 | Sulfur dioxide | 878 | 87 | |
6 | 6.78 ± 0.09 | Difluoro methyl-silane | 801 | 52 | |
7 | 6.82 ± 0.06 | Trimethyl silylanol | 773 | 55 | |
8 | 6.93 ± 0.06 | Ethane, 1,2-diethoxy | 801 | 61 | |
9 | 7.01 ± 0.03 | 1-Pentene-4-methyl | 822 | 54 | |
10 | 7.20 ± 0.09 | 2-Propane | 833 | 60 | yes |
11 | 7.61 ± 0.08 | 1,1,1,1-Trifluoro trimethyl-silylanol | 828 | 56 | |
12 | 7.94 ± 0.05 | Cyclobutanol | 903 | 78 | |
13 | 8.37 ± 0.05 | Trichloro-monofluoro-methane | 822 | 57 | |
14 | 8.95 ± 0.06 | 1,3-Pentadiene | 954 | 75 | |
15 | 9.12 ± 0.06 | 2-Propanol-1-methoxy | 930 | 80 | |
16 | 9.77 ± 0.02 | Unidentified | |||
17 | 10.11 ± 0.04 | 2-Pentene | 915 | 85 | |
18 | 10.24 ± 0.05 | 2-Butanol-3-methyl | 907 | 84 | |
19 | 10.31 ± 0.06 | 2-Methyl pentanal | 839 | 58 | |
20 | 10.54 ± 0.05 | Cyclopentane | 903 | 88 | |
21 | 10.83 ± 0.05 | 2,3-Dimethyl pentane | 66 | ||
22 | 10.91 ± 0.03 | Hexane | 913 | 92 | yes |
23 | 11.00 ± 0.03 | 4-Methyl-2-pentyne | 877 | ||
24 | 11.44 ± 0.06 | Acetonitrile | 920 | 90 | yes |
25 | 11.52 ± 0.02 | Unidentified | |||
26 | 11.63 ± 0.08 | Benzene | 938 | 89 | yes |
27 | 12.42 ± 0.05 | Unidentified | |||
28 | 12.91 ± 0.05 | 1,3,5-Trifluoro benzene | 852 | 57 | |
29 | 13.27 ± 0.03 | Dichloromethane | 931 | 93 | yes |
30 | 13.55 ± 0.06 | Hexamethyl disiloxane | 828 | 81 | |
31 | 13.82 ± 0.04 | 2-Butanone | 948 | 96 | yes |
32 | 14.13 ± 0.07 | Heptene | 899 | 88 | yes |
33 | 14.33 ± 0.02 | 3-Hexanol | 866 | 77 | |
34 | 14.96 ± 0.04 | Acetic acid | 915 | 67 | |
35 | 15.90 ± 0.05 | 2-Propanol-1-methoxy | 838 | 52 | |
36 | 16.49 ± 0.03 | 1,4-Dioxane | 828 | 51 | |
37 | 16.61 ± 0.05 | 2-Pentanone | 903 | 89 | |
38 | 16.70 ± 0.03 | Butanoic acid | 933 | 97 | yes |
39 | 17.42 ± 0.06 | Cyclotrisiloxane hexamethyl | 807 | 58 | |
40 | 17.51 ± 0.04 | Methyl benzene | 938 | 97 | yes |
41 | 18.27 ± 0.06 | Octine | 907 | 70 | yes |
42 | 18.40 ± 0.05 | 2-Hexanone | 881 | 68 | |
43 | 19.66 ± 0.05 | Hexanal | |||
44 | 19.80 ± 0.05 | Methyl isobutyl ketone | 902 | 76 | |
45 | 20.00 ± 0.07 | Hexanoic acid, methyl ester | 874 | 83 | |
46 | 20.16 ± 0.04 | Nonane | 934 | 54 | yes |
47 | 20.32 ± 0.08 | Pentanoic acid, methyl ester | 879 | 79 | |
48 | 20.53 ± 0.05 | Pentanoic acid | 809 | 54 | yes |
49 | 22.00 ± 0.07 | Di(isobutyl)acetone | 815 | 58 | |
50 | 22.49 ± 0.07 | Hexanoic acid | 879 | 79 | yes |
51 | 22.95 ± 0.04 | 3-Heptanone | 918 | 82 | yes |
52 | 23.02 ± 0.06 | Heptanoic acid, methyl ester | 988 | 83 | |
53 | 23.55 ± 0.03 | Eptane, 2,2,4,6,6-pentamethyl | 888 | 55 | |
54 | 23.99 ± 0.06 | Tetrasiloxane, decamethyl | 848 | 51 | |
55 | 25.10 ± 0.03 | Butanoic acid, dimethyl ester | 855 | 74 | |
56 | 25.52 ± 0.05 | Benzaldehyde | 933 | 95 | yes |
57 | 25.93 ± 0.06 | Octanoic acid, methyl ester | 832 | 68 | |
58 | 26.26 ± 0.07 | Decane | 932 | 55 | yes |
59 | 26.88 ± 0.06 | Benzoic acid, methyl ester | 815 | 54 | |
60 | 27.54 ± 0.08 | 1-Decanol-2-esil | 877 | 53 | |
61 | 28.33 ± 0.06 | Dodecane | 928 | 54 | yes |
62 | 29.00 ± 0.08 | Unidentified | |||
63 | 29.65 ± 0.06 | Silane, ethyl-dimethyl-phenyl | 813 | 62 | |
64 | 29.83 ± 0.07 | 4-Phenyl benzofurane | 822 | 56 | |
65 | 30.51 ± 0.06 | Tri-tetra-contane | 812 | 56 | |
66 | 31.53 ± 0.04 | Pentacosane | 811 | 58 |
Compounds | pg*mL−1 in Exhaled Breath |
---|---|
Benzaldehyde | n.d.-LOD |
Methylbenzene | >50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aresta, A.M.; De Vietro, N.; Picciariello, A.; Rotelli, M.T.; Altomare, D.F.; Dezi, A.; Martines, G.; Di Gilio, A.; Palmisani, J.; De Gennaro, G.; et al. Volatile Organic Compounds Determination from Intestinal Polyps and in Exhaled Breath by Gas Chromatography–Mass Spectrometry. Appl. Sci. 2023, 13, 6083. https://doi.org/10.3390/app13106083
Aresta AM, De Vietro N, Picciariello A, Rotelli MT, Altomare DF, Dezi A, Martines G, Di Gilio A, Palmisani J, De Gennaro G, et al. Volatile Organic Compounds Determination from Intestinal Polyps and in Exhaled Breath by Gas Chromatography–Mass Spectrometry. Applied Sciences. 2023; 13(10):6083. https://doi.org/10.3390/app13106083
Chicago/Turabian StyleAresta, Antonella Maria, Nicoletta De Vietro, Arcangelo Picciariello, Maria Teresa Rotelli, Donato Francesco Altomare, Agnese Dezi, Gennaro Martines, Alessia Di Gilio, Jolanda Palmisani, Gianluigi De Gennaro, and et al. 2023. "Volatile Organic Compounds Determination from Intestinal Polyps and in Exhaled Breath by Gas Chromatography–Mass Spectrometry" Applied Sciences 13, no. 10: 6083. https://doi.org/10.3390/app13106083
APA StyleAresta, A. M., De Vietro, N., Picciariello, A., Rotelli, M. T., Altomare, D. F., Dezi, A., Martines, G., Di Gilio, A., Palmisani, J., De Gennaro, G., & Zambonin, C. (2023). Volatile Organic Compounds Determination from Intestinal Polyps and in Exhaled Breath by Gas Chromatography–Mass Spectrometry. Applied Sciences, 13(10), 6083. https://doi.org/10.3390/app13106083