Constructed Wetlands for the Wastewater Treatment: A Review of Italian Case Studies
Abstract
:1. Introduction
2. Classification of CWs
2.1. Free Water Surface Flow (FWS) CWs
2.2. Sub-Surface Flow (SSF) CWs
2.2.1. Horizontal Sub-Surface Flow (HSSF) CWs
2.2.2. Vertical Sub-Surface Flow (VSSF) CWs
2.3. Hybrid CWs
2.4. Macrophytes
2.5. Substrate
3. Discussion
Type of CWs | Location | Research Scale | Plants Used | Wastewater Type | Pollutants and Removal Efficiency (RE %) | Ref. |
---|---|---|---|---|---|---|
Combined (Lagoons and CWs) | S. Italy | pilot | Typha latifolia | Swine wastewater | TSS and OM; (99%), TN; (80–95%) | [74] |
Surface flow | N. E. Italy | pilot | Phragmites australis, Typha latifolia | Agricultural drainage | TN; (58 kg/ha discharged out), TN input was 526 kg/ha | [75] |
HF and VF | E. Sicily | pilot | Phragmites sp. | Municipal effluents | TSS; (85%), BOD5; (65%), COD; (75%), TN; (42%) and TP; (32%) | [76] |
HSS | S. Italy | pilot | Phragmites australis | Dairy wastewater and domestic sewage | COD; (91.9%), BOD5; (93.7%), TN; (48%), TP; (60.6%), Nitrates;-Low conc., Chlorides; (48.7%), Sulfates; (87.8%), Cd; (23.7%), Cr; (51.6%), Cu; (79.4%), Ni; (58.6%), Pb; (69.6%), Zn; (85.7%), Total coliforms; (99.6%), E. coli; (99.7%), Faecal streptococci; (98.8%) | [77] |
Tanks | N. E. Italy | pilot | Phragmites australis | Perfluoroalkyl acids | 50% reduction in PFAAs | [78] |
HSS | S. Italy | pilot | Phragmites australis, Typha latifolia | Benzene solution | Benzene; (39.78%) for the Phragmites field and (35.14%) for the Typha field | [63] |
Hybrid (HF and VF) | C. Italy | large | Phragmites australis | Domestic wastewater | COD; (83–95%), TSS; (68–93%), NH4+; (78–98%), pathogen elimination (3–5 logs) | [79] |
CW | N. C. Italy | lab | Phragmites australis | Urban and industrial wastewater | Fe; (95%), Zn; (73%), Cu; (61%) (with batch experiment), and Cu; (46–80%), Fe; (70–100%), Zn; (65–85%) (with column system) | [80] |
HSS | S. Italy | pilot | Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax, Phragmites australis | Wastewater from the treatment plant | TSS; COD; NH4+; TN; PO4; and E.coli, respectively, by; Vetiveria zizanoides; (86%), (62%), (51%), (59%), (25%), (2.7%): Myscanthus x giganteus; (86%), (61%), (52%), (57%), (20%), (2.8%) Arundo donax; (89%), (59%), (53%), (56%), (28%), (2.8%): Phragmites australis; (88%), (63%), (57%), (61%), (29%), (3.1%) | [81] |
Hybrid (HF and VF) | N. Italy | pilot | Aster tripolium L. Juncus maritimus Lam., Typha latifolia | Agricultural effluent (anaerobic digester) | COD; (76%), nitrate; (86%), ammonia; (87%), P; (87%) with 50 L/d inlet flow COD; (88%), nitrate; (73%), ammonia; (98%), P; (99%) with 200 L/d inlet flow | [82] |
VSS | W. Sicily | pilot | Phragmites australis, Arundo donax | First-flush stormwater | BOD5; (75–83%), COD; (65–69%), TN; (60–66%), Cu; (25–66%), Zn; (38–63%), E. coli; concentration levels < 100 (CFU 100 mL−1) | [83] |
HSS | E. Sicily | large | Phragmites australis, Typha latifolia | Urban wastewater | TSS; BOD5; COD; TN; NH4+; and TP; in CW1, CW2, and CW3, respectively; CW1; (77%), (62%), (63%), (48%), (42%), (25%): CW2; (80%), (63%), (66%),(44%), (40%), (24%): CW3; (81%), (61%), (59%), (44%), (39%), (20%) | [84] |
VSS, free water system | N. Italy | large | Phragmites australis | Combined sewer overflow | COD; (87%), NH4+ (93%) | [85] |
Hybrid (HF and VF) | C. Italy | large | Phragmites australis | Mixed (grey/black) wastewater | COD; (94%), BOD5; (95%), TSS; (84%), NH4+; (86%), TN; (60%), TP; (94%), Total coliforms; faecal coliforms; faecal streptococci; and E. coli; ranged (99.93–99.99%) | [86] |
VF and HF | N. Italy | pilot | Juncus maritimus, Typha latifolia, Cyperus papyrus | Industrial wastewater | The RE in Inlet, VSS flow A, VSS flow B, and HSS flow, respectively, for; COD; (18 ± 2%), (15 ± 1%), (14 ± 1%), (7 ± 1%): Zn; (418 ± 1%), (64.1 ± 9.5%), (112 ± 10%), (87.3 ± 9.5%) Fe; (348.09 ± 25.476%), (13.5 ± 19.0%), (24.9 ± 19.0%), (6.53 ± 18.98%): NO3− (18.9 ± 1.0%), (17.9 ± 0.8%), (17.6 ± 0.83%), (48 ± 0.76%) | [87] |
HSS | S. Italy | large | --- | Dairy wastewater | COD; (94.3%) | [88] |
HSS | C. Italy | large | Phragmites australis | Agro-industrial wastewater | COD; (93%), TSS; (81%), Ammonium; (55%), Nitrates; (40%) TP; (20%), TN; (0.3%), total coliforms; (99.1%), faecal coliforms; (99.7%), faecal streptococci; (99.8%), E. Coli.; (99.7%) | [89] |
VF and HF | N. C. Italy | pilot | Phragmites australis | Landfill leachates | COD; reduction range (0–30%), ammonia; (50–80%), nitrite; (20–26%) | [90] |
HSS | N. C. Italy | large | Phragmites australis | Activated sludge effluent | Removals of hexavalent/trivalent chromium; (72%) and (26%), respectively. | [91] |
HSS | S. Italy | pilot | Cyperus papyrus, Vetiveria zizanoides, Miscanthus x giganteus, Arundo donax, Phragmites australis | municipal wastewater | TSS; COD; and E. coli.; ranged (82–88%), (60–64%), and (2.7–3.1%) U log, respectively. TN; (64%), NH4-N; (61%), PO4-P; (31%) | [92] |
HSS | S. Italy | pilot | Cyperus alternifolius L., Typha latifolia | Treated urban wastewater | Typha latifolia-based RE of TSS; BOD5; COD; TKN; N-NH4; TP; (64.3%), (72.4%), (75.7%), (51.6%), (49.6%), (47.9%): C. alternifolius based RE of TSS; BOD5; COD; TKN; N-NH4; TP; (47%), (64.8%), (66.6%), (36.1%), (38.3%), (31.7%), respectively. E. coli; RE did not exceed (89.5%) | [93] |
HSS | S. Italy | large | Phragmites australis, Typha | Treatment plant effluent | TSS; BOD5; COD; TN; in (H-SSF) CW2; (74 ± 12%), (64 ± 15%), (67 ± 19%), (51± 26%): (H-SSF) CW3; (79 ± 10%), (58 ± 19%), (58 ± 19%), (42 ± 17%): (H-SSF) CW4; (74 ± 13%), (54 ± 23%), (57 ± 20%), (44 ± 23%): Ammonia removal (51%) for H-SSF2, (42%) for H-SSF3 and (44%) for H-SSF4 | [94] |
Constructed surface flow | N. E. Italy | large | Phragmites australis, Typha latifolia | Agricultural drainage | N; (90%) | [95] |
FRB, VF, free water | C. Italy | pilot | Phragmites australis | Treatment plant wastewater | COD; BOD5; TN; N-NH4+; TP; and TSS; were (>80%) | [96] |
Wall cascade (WC) | N.E. Italy | pilot | Mentha aquatica L., Oenanthe javanica, Lysimachia nummularia L. | Kitchen grey waters | COD; (86%), BOD5; (83%), MBAS; (anionic surfactants) (82%), TKN; (57%) and N-NH4; (43%) | [97] |
Hybrid (VF and HF) | -- | pilot | Aster tripoloium, Typha latifolia | Artificially grey water | COD; (95%) (inside the V-SSF vegetated tank) | [98] |
HF and VF | S. Italy | pilot | Phragmites australis | wastewater treatment plant effluent | TSS; (>85%), BOD5; (74%), COD; (61%), TN; (54%), Nitrate; (87%), TP; (57%) in Phragmites australis covered beds. Faecal coliforms; E. coli; and faecal streptococci; (>97%) | [99] |
HF | S. Italy | pilot | Arundo donax L., Cyperus alternifolius L. | Urban wastewater | BOD5; (70–72%), COD; (61–67%), TKN; (47–50%), TP; (43–45%), Pathogen; load removal (90%) | [100] |
HF | -- | lab | Phragmites australis, Carex oshimensis, Cyperus papyrus | Grey water | Turbidity; (>92%), TSS; (>85%), COD; (>89%), BOD5; (>88%) | [101] |
HF (H-SSF1 and H-SSF2) | S. Italy | large | Phragmites australis | Treatment plant effluent | TSS; COD; BOD; (80%), (63%), (58%) for H-SSF1 and (67%), (38%), (41%) for H-SSF2 | [102] |
Hybrid (HF and VF) | S. Italy | large | Phragmites australis, Iris pseudacorus, Cyperus papyrus var. siculus, Canna indica, Typha latifolia | Effluent from a tertiary treatment unit | TSS; (95.8 ± 1.4%), BOD5; (93.2 ± 3.6%), COD; (92.7 ± 6.8%), TP; as PO4 (P-PO4) (26.7 ± 11.2%), N; as NH4 (N-NH4) (78.2 ± 30.8%), TN; (55.1 ± 7.1%), N; as NO3 (N-NO3) (20.7 ± 8.3%), E. coli; (CFU/100 mL) (4 ± 0.7%) | [103] |
CW | S. C. Italy | large | Iris pseudacorus, Juncus effusus, Carex elata, Nymphaea alba | Domestic sewage | COD; (7.6%), TSS; (6.7%), N-NH4+; (92.3%), NO3−; (63.3%), E. coli; (96.2%) | [104] |
Hybrid | S. W. Italy | pilot | Phragmites australis, Arundo donax, Arundo plinii Turra | Landfill leachate | COD; (93%), BOD5; (95%) Ni; (92%) | [105] |
Surface flow | N. C. Italy | large | Phragmites australis, Typha latifolia, Typha angustifolia, Salix alba, Populus alba | Agricultural drainage | TN; (47%), TP (49%) | [106] |
Hybrid | S. Italy | pilot | Canna indica, Typha latifolia | Semi-synthetic stormwater | Metals; (Cd, Cr, Fe, Pb, Cu, Zn) (70–98%) | [107] |
Constructed surface flow | N. E. Italy | large | Phragmites australis | Herbicide runoff | Mitigation effectiveness (98%), i.e., (45–80%) fold lower than the applied concentration | [108] |
Hybrid (VF and HF) | N. W. Italy | pilot | Phragmites australis | Cheese factory wastewater | RE (minimum-maximum) for TSS; (28–88%), COD; (53–80%), BOD5; (31–80%), TOC; (25–80%), TP; (10–73%), TN; (40–51%) | [109] |
Subsurface flow | N. W. Italy | large | Phragmites australis, Typha latifolia, Scirpus lacustris | Dairy wastewater | BOD5; (>90%), nitrogen (50–60%) | [110] |
(HF and VFl), and free water system | C. Italy | large | 16 different Tuscany’s native macrophytes | Municipal wastewater | Organic load; (86%), TN; (60%), TP; (43%), TSS; (89%), (NH4+); (76%), (4–5) logs pathogens concentration | [111] |
Surface flow | N. E. Italy | large | Typha latifolia, Phragmites australis | Agricultural drainage | NO3–N; (83%), TN; (79%), PO4-P; (48%), TP; (67%) | [112] |
Free water surface | N. E. Italy | large | Phragmites australis, Typha latifolia, Carex spp., Juncus spp., Phalaris arundinacea, Mentha aquatic, Iris pseudacorus | Agricultural drainage waters | TN; (33.3–49.0%), N-NO3; (32.2–80.5%) | [113] |
HSS | C. Italy | pilot | Phragmites australis | Olive oil extraction effluent | COD; (74.1 ± 17.6%), polyphenols (83.4 ± 17.8%) | [114] |
HSS, and free water system | C. Italy | large | Typha latifolia, Myriophyllum spicatum, Phragmites australis, Elodea Canadensis, Ceratophyllum demersum, Lythrum salicaria, Iris pseudacorus, Epilobium hirsutum, Alisma plantago aquatica, Butumus umbellatus | Winery wastewater | COD; (97.5%), N-NO2−; (84.7%), NO3−; (39.9%), TP; (45.5%) | [115] |
Subsurface VF | C. Italy | pilot | Zantedeschia aethiopica, Canna indica, Carex hirta, Miscanthus sinensis, Phragmites australis | Synthetic wastewater (micropollutant) | N; (67.4%), P; (74.4%), Zn; (99.3%), Cu; (99.3%), LAS; (78.3%), Carbamazepine; (61.4%) | [116] |
HSS | S. Italy | pilot | Phragmites australis, Typha latifolia | Produced wastewater | Paracetamol removals in phragmites bed (51.7–99.9%), in Typha bed (46.7–>99.9%) | [117] |
Surface flow | N. Italy | large | Phragmites australis, Typha latifolia, Carex spp. | Agricultural drainage water | TSS; (82%), TN; (78%), NO3-N; (78%), NH4+-N; (91%) | [118] |
Hybrid (VF and HF) | N. E. Italy | pilot | Canna indica, Symphytum officinale, Phragmites australis | Piggery wastewater | COD; (79%), TN; (64%), NH4-N; (63%), NO3-N; (53%), P; (61%) | [119] |
HSS | S. Italy | pilot | Arundo donax, Cyperus alternifolius | Pre-treated urban wastewater | TSS; (73.72%), BOD; (67%), COD; (66.21%), TN; (50.33%), NH4-N; (54.11%), TP; (41.11%). Total coliforms; faecal coliforms; faecal streptococci; and E.coli; (89.60%), (88.01%), (83.12%), and (87.67%), respectively. | [120] |
V-SSF and H-SSF | N. Italy | pilot | Phragmites australis | Domestic wastewaters | TN; (71%), NH4-N; (94%), TP; (27%) and COD; (92%) in the v-SSF TN; (59%), NH4-N; (21%), TP; (52%) and COD; (70%) in the h-SSF | [121] |
CWs | C. Italy | large | Phragmites australis, Typha latifolia, Lemna minor L., Lemna minuta Kunth, Sparganium erectum L., Carex pendula Huds, Salix alba L., Populus alba L. | Municipal wastewater | Sulphates; (50%), (33% in winter) Nitrates; (80%) in winter, (15%) in spring and summer E. coli; (82%) in spring, (99%) in autumn | [122] |
HSS | S. Italy | pilot | Cyperus alternifolius, Typha latifolia | wastewater treatment plant effluent | BOD5; (70.6–68.1%), TKN; (43.9–52.8%), N-NH4; (43.2–48.0%), TP; (37.8–42.1%), Total coliforms; (80.5–88.7%), Faecal coliforms; (83.5–90.6%), Faecal streptococci; (76.6–83.1%), E. coli; (87.3–91.3%) | [123] |
(H-SSF1) and (H-SSF2) | N. E. Italy S. Italy | large | Phragmites australis | Piggery manure Municipal wastewater | COD; (62.7%), TN; (34.9%), TP; (7.61%) COD; (64.5–45.1%), TN; (44.4–48.1%), TP; (25–37.5%) in Catania (S. Italy) | [124] |
HSS | N. Italy | pilot | Phragmites australis | Domestic wastewater | Cu; (3.4–9%), Ni; (35 ± 16–25 ± 10%), Zn; (27 ± 9–26 ± 5.4%) | [125] |
HSF | S. Italy | pilot | Phragmites australis, Typha latifolia | BTEX and metals solution | Fe; (88–95%), Cr; (86–90%), Pb; (78–88%): BTEX; (46–57%) | [126] |
HSS | S. Italy | large | Phragmites australis | municipal wastewater effluent | TSS; BOD5; COD; TN; and TP; (74 ± 16%), (42 ± 21%), (41 ± 21%), (61 ± 17%), and (50 ± 31%), respectively. | [127] |
HSS | S. Italy | pilot | Phragmites australis, Typha latifolia | Artificial wastewater | Cr; (87%), Pb; (88%), Fe; (92%) in Phragmites bed: Cr; (90%), Pb; (87%), Fe; (95%) in Typha bed | [128] |
CW | C. Italy | pilot | Phragmites australis, Salix matsudana | Urban wastewater (micro-pollutants) | NP; diclofenac; atenolol; (8.4–100%) in P. australis bed while S. matsudana preferentially removed NP1EO, NP2EO, ketoprofene, and triclosan | [129] |
HSS | N. Italy | pilot | Phragmites australis | municipal (micro-pollutant) | From 1% for psychiatric drugs to 26% for antihypertensives, on average (16 ± 8%) | [130] |
HSSFs CW(1) HSSFs CW(2) | S. Italy | pilot | Festuca, Lolium, Pennisetum spp., Arundo donax L., Cyperus alternifolius L., Typha latifolia L. | Treated wastewater | RE by T. latifolia and C. alternifolius for TSS; (64–57%), BOD5; (68–64%), COD; (75–70%), TKN; (51–43%), NH4-N; (52–41%), TP; (47–38%), Total Coliform; (88–85%), Faecal Coliform; (88–83), Faecal Streptococci; (84–77%), E.coli; (90–88%) RE by A. donax and C. alternifolius for TSS; (74–71%), BOD5; (70–64%), COD; (71–66%), TKN; (48–45%), TP; (48–42%), Total coliforms; (89–85%), Faecal coliforms; (90–88%), E. coli; (88–85%) | [131] |
HSS | S. Italy | pilot | Cyperus alternifolius, Typha latifolia | Urban wastewater | RE by C. alternifolius and T. latifolia for TSS; (74.2–77%), BOD; (68–70.5%), COD; (74.2–77%), TKN; (42.7–51.8%), N-NH4; (42.3–49.4%), TP; (35.6–39%). Total coliforms; (83.6–90.4%), Faecal coliforms; (79.6–88.8%), Faecal streptococci; (76.4–84.1%), E. coli; (87.7–92.1%) | [132] |
HSS | S. Italy | pilot | Arundo donax, Cyperus alternifolius | Dairy wastewater | RE by A. donax and C. alternifolius for TSS; (79.6–76.1%), BOD5; (61.8–61.4%), COD; (51.5–53.1%), TN; (45.2–41.7%), N-NH4; (36.7–40.7%), ON; (41.8–41.1%), TP; (49.8–45.7%), Cu; (43.2–39.9%), Ni; (44.7–39.3%), Pb; (58.3–46.3%), Zn; (--/--), Total coliforms; (88.1–83.2%), Faecal streptococci; (83.9–81.3%), E. coli; (88.3–86.9%), Salmonella spp; (--/--) | [133] |
CWs | N. Italy | large | Phragmites australis | River water (heavy metals) | Cr; (36.96 mg/g), Ni; (0.67–2.4 mg/g) but 10 times higher in December | [134] |
HSS | S. Italy | large | Phragmites sp. | wastewater treatment plant effluent | TSS; (77–92%), BOD5; (37–72%), COD; (51–79%), E. coli; (97–99.5%). Salmonella; and helminth; eggs 100% removed | [135] |
Hybrid (VF and HF) | N. E. Italy | large | Canna indica, Phragmites australis | Synthetic wastewater | TN; (95%), NH4-N; (95%), NO3-N; (93%) | [136] |
Hybrid (VF and HF) | N. Italy | pilot | Phragmites australis | University wastewater | RE by vertical-horizontal CWs for COD; (70.4–40.1%), TSS; (80.4–72.7%), TN; (49.3–88.8%), NO3—N; (--/--), NO2–N; (--/--), TP; (47.3%-88.5%), PO43−P (34.2–95.1%), Cl−; (0–9.7%), Br−; (33%/-), SO42−; (3.5–10.2%). E. coli; (74.7–99.7%), Total coliforms; (90.7–93.5%), Enterococcus; (50.1–99.9%) | [137] |
HSS | S. Italy | pilot | Arundo donax, Cyperus alternifolius | Treated urban wastewater | RE by A. donax and C. alternifolius for TSS; (69.5–64.5%), BOD5; (57.1–54.2%), COD; (72.9–72%, TKN; (54–51.9%), N-NH4; (59.7–57.5%), TP; (35.1–36.4%), Cl; (8.8–8.6%), Ca; (28–26%), K; (26.3–21%), Mg; (16.4–11.5%), Na; (9.9–7%) | [138] |
HSS | N. C. Italy | large | Phragmites australis | Textile wastewater | Hexavalent chromium; (70%) | [139] |
HSS | S. Italy | pilot | Arundo donax, Cyperus alternifolius | Combined dairy and domestic wastewater | RE by A. donax and C. alternifolius for TSS; (80.69–82.98%), BOD5; (78.02–75.61%), COD; (62.67–61.12%), TN; (51.84–49.68%), N–NH4; (45.05–51.51%), ON; (40.51–45.11%), TP; (39.86–38.88%), Cu; (44.11–48.31%), Ni; (35.17–31.03%), Pb; (31.57–36.84%), Zn; (56.25–50.33%) | [140] |
VF | S. E. Italy | pilot | Phragmites australis | A mix of 5%, 10%, and 20% landfill leachate | COD; (60.5%), N–NH4+; (47.5%) in 5% landfill leachate. N-NO3–; (49.4%) in 10% of landfill leachate | [141] |
VSS, HSS, and free surface flow | S. Italy | large | Phragmites australis, Cyperus Papyrus var. Siculus, Canna indica, Iris pseudacorus, Nymphaea alba L., Scirpus lacustris L. | Winery wastewater | TSS; (69%), BOD5; (78%), COD; (81%), NH4-N; (57%), TN; (56%), PO4-P; (38%) | [142] |
Hybrid (SSF and floating) | E. Italy | large | Arundo donax, Phragmites australis | Digestate liquid fraction from anaerobic digestion plant | COD; (57.9%), TN; (64.6%), NH4-N; (65.1%), NO3-N; (35.6%), TP; (49.2%), PO4-P; (45.1%) in the subsurface flow line and, COD; (89.2%), TN; (90%), NH4-N; (89%), NO3-N; (93.8%), TP; (50.3%), PO4-P; (49.9%) in floating treatment wetland line | [143] |
Hybrid (HSS and floating) | N. E. Italy | pilot | Phragmites australis, Iris pseudacorus | Municipal wastewater | TN; (74.3%), NH4-N; (62.1%), NO3-N; (77.7%), TP; (29.6%), PO4-P; (37.4%), COD; (46.7%) | [144] |
Plastic vertical in-vessel | S. Italy | pilot | Arundo donax | Municipal sewage | COD; (78.7–85.7%), TSS; (89–94.9%), TN; (86.1–93.2%), ammonia; (77.4–98.1%). Cu; and Zn; reduced almost to zero | [145] |
Microcosm SS | N. E. Italy | large | Carex elata, Juncus effusus L., Phalaris arundinacea, Phragmites australis, Typha latifolia L. | Artificial wastewater | PO4-P; removal (86.2%), (48.1%), (37.6%) and (36.0%) for P. aundinacea, C. elata, J. effusus and P. australis bed, respectively. T. latifolia was able to remove more than the PO4-P load (13.05 g/m2), with a P uptake: P supplied ratio (21.8%) | [146] |
HSS | N. E. Italy | pilot | Typha angustifolia, Phragmites australis | Domestic wastewater | Pathogens (98%). TSS; COD; and, BOD5 (90%). N-NH4+; N-NO3–; TN; Cl–; SO42–;PO43– (50%) | [147] |
HSS | S. Italy | pilot | Cyperus alternifolius, Typha latifolia | Urban wastewater | BOD5; calculated using concentrations and mass loads in T. latifolia (65.5 ± 7.4%) and (70.7 ± 3.8%), respectively. For C. alternifolius (60.5 ± 8.9%) and (65.5 ± 5.5%) | [148] |
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chheang, L.; Thongkon, N.; Sriwiriyarat, T.; Thanasupsin, S.P. Heavy Metal Contamination and Human Health Implications in the Chan Thnal Reservoir, Cambodia. Sustainability 2021, 13, 13538. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Chardon, W.J.; Bechmann, M.E.; Gascuel-Odoux, C.; Hofman, G.; Kronvang, B.; Rubæk, G.H.; Ulén, B.; Dorioz, J.-M. Mitigation Options to Reduce Phosphorus Losses from the Agricultural Sector and Improve Surface Water Quality: A Review. Sci. Total Environ. 2014, 468–469, 1255–1266. [Google Scholar] [CrossRef]
- Resende, J.D.; Nolasco, M.A.; Pacca, S.A. Life Cycle Assessment and Costing of Wastewater Treatment Systems Coupled to Constructed Wetlands. Resour. Conserv. Recycl. 2019, 148, 170–177. [Google Scholar] [CrossRef]
- Marañón, E.; Ulmanu, M.; Fernández, Y.; Anger, I.; Castrillón, L. Removal of Ammonium from Aqueous Solutions with Volcanic Tuff. J. Hazard. Mater. 2006, 137, 1402–1409. [Google Scholar] [CrossRef]
- Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The Importance of Small Waterbodies for Biodiversity and Ecosystem Services: Implications for Policy Makers. Hydrobiologia 2017, 793, 3–39. [Google Scholar] [CrossRef]
- Gasco Cavero, S.; García-Gil, A.; Cruz-Pérez, N.; Martín Rodríguez, L.F.; Laspidou, C.; ContrerasLlin, A.; Quintana, G.; Díaz-Cruz, S.; Santamarta, J.C. First Emerging Pollutants Profile in Groundwater of the Volcanic Active Island of El Hierro (Canary Islands). Sci. Total Environ. 2023, 872, 162204. [Google Scholar] [CrossRef] [PubMed]
- Obaideen, K.; Shehata, N.; Sayed, E.T.; Abdelkareem, M.A.; Mahmoud, M.S.; Olabi, A.G. The Role of Wastewater Treatment in Achieving Sustainable Development Goals (SDGs) and Sustainability Guideline. Energy Nexus 2022, 7, 100112. [Google Scholar] [CrossRef]
- Castellar, J.A.C.; Torrens, A.; Buttiglieri, G.; Monclús, H.; Arias, C.A.; Carvalho, P.N.; Galvao, A.; Comas, J. Nature-Based Solutions Coupled with Advanced Technologies: An Opportunity for Decentralized Water Reuse in Cities. J. Clean. Prod. 2022, 340, 130660. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Zheng, J.S.; Sharp, R.G. Phytoremediation in Engineered Wetlands: Mechanisms and Applications. Procedia Environ. Sci. 2010, 2, 1315–1325. [Google Scholar] [CrossRef]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Recent Studies on Applications of Aquatic Weed Plants in Phytoremediation of Wastewater: A Review Article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A Review on Nitrogen and Organics Removal Mechanisms in Subsurface Flow Constructed Wetlands: Dependency on Environmental Parameters, Operating Conditions and Supporting Media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.R.; Santos, F.; Ferreira, A.C.F.; Lourinha, I.; Basto, M.C.P.; Mucha, A.P. Can Veterinary Antibiotics Affect Constructed Wetlands Performance during Treatment of Livestock Wastewater? Ecol. Eng. 2017, 102, 583–588. [Google Scholar] [CrossRef]
- Zhang, D.; Gersberg, R.M.; Ng, W.J.; Tan, S.K. Removal of Pharmaceuticals and Personal Care Products in Aquatic Plant-Based Systems: A Review. Environ. Pollut. 2014, 184, 620–639. [Google Scholar] [CrossRef]
- Schwitzguébel, J.-P.; Comino, E.; Plata, N.; Khalvati, M. Is Phytoremediation a Sustainable and Reliable Approach to Clean-up Contaminated Water and Soil in Alpine Areas? Environ. Sci. Pollut. Res. 2011, 18, 842–856. [Google Scholar] [CrossRef]
- Kamilya, T.; Majumder, A.; Yadav, M.K.; Ayoob, S.; Tripathy, S.; Gupta, A.K. Nutrient Pollution and Its Remediation Using Constructed Wetlands: Insights into Removal and Recovery Mechanisms, Modifications and Sustainable Aspects. J. Environ. Chem. Eng. 2022, 10, 107444. [Google Scholar] [CrossRef]
- Bruch, I.; Fritsche, J.; Bänninger, D.; Alewell, U.; Sendelov, M.; Hürlimann, H.; Hasselbach, R.; Alewell, C. Improving the Treatment Efficiency of Constructed Wetlands with Zeolite-Containing Filter Sands. Bioresour. Technol. 2011, 102, 937–941. [Google Scholar] [CrossRef]
- Klomjek, P. Swine Wastewater Treatment Using Vertical Subsurface Flow Constructed Wetland Planted with Napier Grass. Sustain. Environ. Res. 2016, 26, 217–223. [Google Scholar] [CrossRef]
- Moreira, F.D.; Dias, E.H.O. Constructed Wetlands Applied in Rural Sanitation: A Review. Environ. Res. 2020, 190, 110016. [Google Scholar] [CrossRef]
- Dan, T.H.; Quang, L.N.; Chiem, N.H.; Brix, H. Treatment of High-Strength Wastewater in Tropical Constructed Wetlands Planted with Sesbania Sesban: Horizontal Subsurface Flow versus Vertical Downflow. Ecol. Eng. 2011, 37, 711–720. [Google Scholar] [CrossRef]
- Vymazal, J. Plants Used in Constructed Wetlands with Horizontal Subsurface Flow: A Review. Hydrobiologia 2011, 674, 133–156. [Google Scholar] [CrossRef]
- Rajan, R.J.; Sudarsan, J.S.; Nithiyanantham, S. Efficiency of Constructed Wetlands in Treating E. Efficiency of Constructed Wetlands in Treating E. Coli Bacteria Present in Livestock Wastewater. Int. J. Environ. Sci. Technol. 2020, 17, 2153–2162. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Treatment of Industrial Wastewaters: A Review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.; Dong, J.; Tan, S.K. Application of Constructed Wetlands for Treating Agricultural Runoff and Agro-Industrial Wastewater: A Review. Hydrobiologia 2018, 805, 1–31. [Google Scholar] [CrossRef]
- Fountoulakis, M.S.; Terzakis, S.; Chatzinotas, A.; Brix, H.; Kalogerakis, N.; Manios, T. Pilot-Scale Comparison of Constructed Wetlands Operated under High Hydraulic Loading Rates and Attached Biofilm Reactors for Domestic Wastewater Treatment. Sci. Total Environ. 2009, 407, 2996–3003. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Deng, S.; Li, X.; Li, Y.; Chen, J.; Duan, C. Effective Treatment of Acid Mine Drainage by Constructed Wetland Column: Coupling Walnut Shell and Its Biochar Product as the Substrates. J. Water Process Eng. 2022, 49, 103116. [Google Scholar] [CrossRef]
- Huett, D.O.; Morris, S.G.; Smith, G.; Hunt, N. Nitrogen and Phosphorus Removal from Plant Nursery Runoff in Vegetated and Unvegetated Subsurface Flow Wetlands. Water Res. 2005, 39, 3259–3272. [Google Scholar] [CrossRef]
- Bulc, T.G. Long Term Performance of a Constructed Wetland for Landfill Leachate Treatment. Ecol. Eng. 2006, 26, 365–374. [Google Scholar] [CrossRef]
- Markou, G.; Wang, L.; Ye, J.; Unc, A. Using Agro-Industrial Wastes for the Cultivation of Microalgae and Duckweeds: Contamination Risks and Biomass Safety Concerns. Biotechnol. Adv. 2018, 36, 1238–1254. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A Comparative Study on the Removal of Nutrients and Organic Matter in Wetland Reactors Employing Organic Media. Chem. Eng. J. 2011, 171, 439–447. [Google Scholar] [CrossRef]
- Wu, S.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R. Development of Constructed Wetlands in Performance Intensifications for Wastewater Treatment: A Nitrogen and Organic Matter Targeted Review. Water Res. 2014, 57, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Wetlands for Wastewater Treatment and Subsequent Recycling of Treated Effluent: A Review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef] [PubMed]
- USEPA. A Handbook of Constructed Wetlands: A Guide to Creating Wetlands for Agricultural Wastewater, Domestic Wastewater, Coal Mine Drainage Stormwater in the Mid-Atlantic Region; Vol. 1: General considerations; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2000.
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 978-1-56670-526-4. [Google Scholar]
- Nivala, J.; Wallace, S.; Headley, T.; Kassa, K.; Brix, H.; van Afferden, M.; Müller, R. Oxygen Transfer and Consumption in Subsurface Flow Treatment Wetlands. Ecol. Eng. 2013, 61, 544–554. [Google Scholar] [CrossRef]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal SubSurface Flow; Environmental Pollution; Springer: Dordrecht, The Netherlands, 2008; Volume 14, ISBN 978-1-4020-8579-6. [Google Scholar]
- Tsihrintzis, V.A.; Akratos, C.S.; Gikas, G.D.; Karamouzis, D.; Angelakis, A.N. Performance and Cost Comparison of a FWS and a VSF Constructed Wetland System. Environ. Technol. 2007, 28, 621–628. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef]
- Eke, P.E.; Scholz, M. Benzene Removal with Vertical-Flow Constructed Treatment Wetlands. J. Chem. Technol. Biotechnol. 2008, 83, 55–63. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Sun, G.; Allen, S.J. Anti-Sized Reed Bed System for Animal Wastewater Treatment: A Comparative Study. Water Res. 2004, 38, 2907–2917. [Google Scholar] [CrossRef]
- Zhi, W.; Yuan, L.; Ji, G.; He, C. Enhanced Long-Term Nitrogen Removal and Its Quantitative Molecular Mechanism in Tidal Flow Constructed Wetlands. Environ. Sci. Technol. 2015, 49, 4575–4583. [Google Scholar] [CrossRef]
- Sani, A.; Scholz, M.; Bouillon, L. Seasonal Assessment of Experimental Vertical-Flow Constructed Wetlands Treating Domestic Wastewater. Bioresour. Technol. 2013, 147, 585–596. [Google Scholar] [CrossRef]
- Vymazal, J. The Use of Hybrid Constructed Wetlands for Wastewater Treatment with Special Attention to Nitrogen Removal: A Review of a Recent Development. Water Res. 2013, 47, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Emergent Plants Used in Free Water Surface Constructed Wetlands: A Review. Ecol. Eng. 2013, 61, 582–592. [Google Scholar] [CrossRef]
- Kochi, L.Y.; Freitas, P.L.; Maranho, L.T.; Juneau, P.; Gomes, M.P. Aquatic Macrophytes in Constructed Wetlands: A Fight against Water Pollution. Sustainability 2020, 12, 9202. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Ennabili, A.; Radoux, M. Nitrogen and Phosphorus Uptake and Biomass Production in Four Riparian Plants Grown in Subsurface Flow Constructed Wetlands for Urban Wastewater Treatment. J. Environ. Manag. 2021, 280, 111806. [Google Scholar] [CrossRef]
- Batool, A.; Saleh, T.A. Removal of Toxic Metals from Wastewater in Constructed Wetlands as a Green Technology; Catalyst Role of Substrates and Chelators. Ecotoxicol. Environ. Saf. 2020, 189, 109924. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global Development of Various Emerged Substrates Utilized in Constructed Wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef]
- Ji, Z.; Tang, W.; Pei, Y. Constructed Wetland Substrates: A Review on Development, Function Mechanisms, and Application in Contaminants Removal. Chemosphere 2022, 286, 131564. [Google Scholar] [CrossRef]
- Valipour, A.; Ahn, Y.-H. Constructed Wetlands as Sustainable Ecotechnologies in Decentralization Practices: A Review. Environ. Sci. Pollut. Res. 2016, 23, 180–197. [Google Scholar] [CrossRef]
- Dordio, A.V.; Carvalho, A.J.P. Organic Xenobiotics Removal in Constructed Wetlands, with Emphasis on the Importance of the Support Matrix. J. Hazard. Mater. 2013, 252–253, 272–292. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, X.; Zheng, Y.; Dzakpasu, M.; Zhao, Y.; Xiong, J. Functions of Slags and Gravels as Substrates in Large-Scale Demonstration Constructed Wetland Systems for Polluted River Water Treatment. Environ. Sci. Pollut. Res. 2015, 22, 12982–12991. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Xue, Y.; Zhao, Y.; Xiao, W.; Liu, Y.; Liu, J. Effects of Different Covering Systems and Carbon Nitrogen Ratios on Nitrogen Removal in Surface Flow Constructed Wetlands. J. Clean. Prod. 2018, 172, 541–551. [Google Scholar] [CrossRef]
- Lu, S.; Hu, H.; Sun, Y.; Yang, J. Effect of Carbon Source on the Denitrification in Constructed Wetlands. J. Environ. Sci. 2009, 21, 1036–1043. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-J.; Tian, Y.-H.; Zhang, Y.; Song, B.-R.; Li, H.-C.; Chen, Z.-H. Effects of Root Organic Exudates on Rhizosphere Microbes and Nutrient Removal in the Constructed Wetlands. Ecol. Eng. 2016, 92, 243–250. [Google Scholar] [CrossRef]
- Tao, W.; He, Y.; Wang, Z.; Smith, R.; Shayya, W.; Pei, Y. Effects of PH and Temperature on Coupling Nitritation and Anammox in Biofilters Treating Dairy Wastewater. Ecol. Eng. 2012, 47, 76–82. [Google Scholar] [CrossRef]
- Kyambadde, J.; Kansiime, F.; Gumaelius, L.; Dalhammar, G. A Comparative Study of Cyperus Papyrus and Miscanthidium Violaceum-Based Constructed Wetlands for Wastewater Treatment in a Tropical Climate. Water Res. 2004, 38, 475–485. [Google Scholar] [CrossRef]
- Konnerup, D.; Koottatep, T.; Brix, H. Treatment of Domestic Wastewater in Tropical, Subsurface Flow Constructed Wetlands Planted with Canna and Heliconia. Ecol. Eng. 2009, 35, 248–257. [Google Scholar] [CrossRef]
- Senzia, M.A.; Mashauri, D.A.; Mayo, A.W. Suitability of Constructed Wetlands and Waste Stabilisation Ponds in Wastewater Treatment: Nitrogen Transformation and Removal. Phys. Chem. Earth Parts A/B/C 2003, 28, 1117–1124. [Google Scholar] [CrossRef]
- Dias, S.; Mucha, A.P.; Duarte Crespo, R.; Rodrigues, P.; Almeida, C.M.R. Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse. Int. J. Environ. Res. Public Health 2020, 17, 8592. [Google Scholar] [CrossRef]
- Ranieri, E.; Gorgoglione, A.; Petrella, A.; Petruzzelli, V. Benzene Removal in Horizontal Subsurface Flow Constructed Wetlands Treatment. Int. J. Appl. Eng. Res. 2015, 10, 14603–14614. [Google Scholar]
- Meng, P.; Pei, H.; Hu, W.; Shao, Y.; Li, Z. How to Increase Microbial Degradation in Constructed Wetlands: Influencing Factors and Improvement Measures. Bioresour. Technol. 2014, 157, 316–326. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, S.-H.; Delaune, R.D.; Cho, J.-S.; Heo, J.-S.; Ok, Y.S.; Seo, D.-C. Enhancement of Nitrate Removal in Constructed Wetlands Utilizing a Combined Autotrophic and Heterotrophic Denitrification Technology for Treating Hydroponic Wastewater Containing High Nitrate and Low Organic Carbon Concentrations. Agric. Water Manag. 2015, 162, 1–14. [Google Scholar] [CrossRef]
- Kong, Z.; Wang, X.; Liu, Q.; Li, T.; Chen, X.; Chai, L.; Liu, D.; Shen, Q. Evolution of Various Fractions during the Windrow Composting of Chicken Manure with Rice Chaff. J. Environ. Manag. 2018, 207, 366–377. [Google Scholar] [CrossRef]
- Trang, N.T.D.; Konnerup, D.; Schierup, H.-H.; Chiem, N.H.; Tuan, L.A.; Brix, H. Kinetics of Pollutant Removal from Domestic Wastewater in a Tropical Horizontal Subsurface Flow Constructed Wetland System: Effects of Hydraulic Loading Rate. Ecol. Eng. 2010, 36, 527–535. [Google Scholar] [CrossRef]
- Hwang, J.H.; Oleszkiewicz, J.A. Effect of Cold-Temperature Shock on Nitrification. Water Environ. Res. 2007, 79, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Tunçsiper, B. Nitrogen Removal in a Combined Vertical and Horizontal Subsurface-Flow Constructed Wetland System. Desalination 2009, 247, 466–475. [Google Scholar] [CrossRef]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of Plants and Microorganisms in Constructed Wetlands for Wastewater Treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef]
- Kuschk, P.; Wießner, A.; Kappelmeyer, U.; Weißbrodt, E.; Kästner, M.; Stottmeister, U. Annual Cycle of Nitrogen Removal by a Pilot-Scale Subsurface Horizontal Flow in a Constructed Wetland under Moderate Climate. Water Res. 2003, 37, 4236–4242. [Google Scholar] [CrossRef]
- Baskar, G.; Deeptha, V.; Annadurai, R. Comparison of Treatment Performance Between Constructed Wetlands with Different Plants. Int. J. Res. Eng. Technol. 2014, 3, 210–214. [Google Scholar] [CrossRef]
- Hocaoglu, S.M.; Insel, G.; Cokgor, E.U.; Orhon, D. Effect of Low Dissolved Oxygen on Simultaneous Nitrification and Denitrification in a Membrane Bioreactor Treating Black Water. Bioresour. Technol. 2011, 102, 4333–4340. [Google Scholar] [CrossRef]
- Denisi, P.; Biondo, N.; Bombino, G.; Folino, A.; Zema, D.A.; Zimbone, S.M. A Combined System Using Lagoons and Constructed Wetlands for Swine Wastewater Treatment. Sustainability 2021, 13, 12390. [Google Scholar] [CrossRef]
- Borin, M.; Bonaiti, G.; Santamaria, G.; Giardini, L. A Constructed Surface Flow Wetland for Treating Agricultural Waste Waters. Water Sci. Technol. 2001, 44, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Pollice, A.; Lonigro, A.; Masi, S.; Palese, A.M.; Cirelli, G.L.; Toscano, A.; Passino, R. Agricultural Wastewater Reuse in Southern Italy. Desalination 2006, 187, 323–334. [Google Scholar] [CrossRef]
- Mantovi, P.; Marmiroli, M.; Maestri, E.; Tagliavini, S.; Piccinini, S.; Marmiroli, N. Application of a Horizontal Subsurface Flow Constructed Wetland on Treatment of Dairy Parlor Wastewater. Bioresour. Technol. 2003, 88, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.; Peruzzi, C.; Cislaghi, A.; Polesello, S.; Valsecchi, S.; Lava, R.; Zanon, F.; Santovito, G.; Barausse, A.; Bonato, M. Assessment of Reed Grasses (Phragmites Australis) Performance in PFAS Removal from Water: A Phytoremediation Pilot Plant Study. Water 2022, 14, 946. [Google Scholar] [CrossRef]
- Masi, F.; Martinuzzi, N.; Bresciani, R.; Giovannelli, L.; Conte, G. Tolerance to Hydraulic and Organic Load Fluctuations in Constructed Wetlands. Water Sci. Technol. 2007, 56, 39–48. [Google Scholar] [CrossRef]
- Bianchi, E.; Coppi, A.; Nucci, S.; Antal, A.; Berardi, C.; Coppini, E.; Fibbi, D.; Del Bubba, M.; Gonnelli, C.; Colzi, I. Closing the Loop in a Constructed Wetland for the Improvement of Metal Removal: The Use of Phragmites Australis Biomass Harvested from the System as Biosorbent. Env. Sci Pollut Res 2021, 28, 11444–11453. [Google Scholar] [CrossRef]
- Toscano, A.; Marzo, A.; Milani, M.; Cirelli, G.L.; Barbagallo, S. Comparison of Removal Efficiencies in Mediterranean Pilot Constructed Wetlands Vegetated with Different Plant Species. Ecol. Eng. 2015, 75, 155–160. [Google Scholar] [CrossRef]
- Comino, E.; Riggio, V.A.; Rosso, M. Constructed Wetland Treatment of Agricultural Effluent from an Anaerobic Digester. Ecol. Eng. 2013, 54, 165–172. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Virga, G.; Licata, M.; Leto, C.; La Bella, S. Constructed Wetlands as Sustainable Technology for the Treatment and Reuse of the First-Flush Stormwater in Agriculture—A Case Study in Sicily (Italy). Water 2020, 12, 2542. [Google Scholar] [CrossRef]
- Russo, N.; Marzo, A.; Randazzo, C.; Caggia, C.; Toscano, A.; Cirelli, G.L. Constructed Wetlands Combined with Disinfection Systems for Removal of Urban Wastewater Contaminants. Sci. Total Environ. 2019, 656, 558–566. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Bresciani, R.; Conte, G. Constructed Wetlands for Combined Sewer Overflow Treatment: Ecosystem Services at Gorla Maggiore, Italy. Ecol. Eng. 2017, 98, 427–438. [Google Scholar] [CrossRef]
- Masi, F.; Martinuzzi, N. Constructed Wetlands for the Mediterranean Countries: Hybrid Systems for Water Reuse and Sustainable Sanitation. Desalination 2007, 215, 44–55. [Google Scholar] [CrossRef]
- Riggio, V.A.; Ruffino, B.; Campo, G.; Comino, E.; Comoglio, C.; Zanetti, M. Constructed Wetlands for the Reuse of Industrial Wastewater: A Case-Study. J. Clean. Prod. 2018, 171, 723–732. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Bresciani, R.; Basile, C. Dairy Wastewater Treatment by a Horizontal Subsurface Flow Constructed Wetland in Southern Italy. In Natural and Constructed Wetlands; Vymazal, J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 131–139. ISBN 978-3-319-38926-4. [Google Scholar]
- Pucci, B.; Conte, G.; Martinuzzi, N.; Giovannelli, L.; Masi, F. Design and Performance of a Horizontal Flow Constructed Wetland for Treatment of Dairy and Agricultural Wastewater in the“Chianti” Countryside. In Proceedings of the IWA 7th International Conference on Wetland Systems for Water Pollution Control, Orlando, FL, USA, 11–16 November 2000; pp. 1433–1436. [Google Scholar]
- Coppini, E.; Palli, L.; Antal, A.; Del Bubba, M.; Miceli, E.; Fani, R.; Fibbi, D. Design and Start-up of a Constructed Wetland as Tertiary Treatment for Landfill Leachates. Water Sci. Technol. 2019, 79, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Fibbi, D.; Doumett, S.; Lepri, L.; Checchini, L.; Gonnelli, C.; Coppini, E.; Del Bubba, M. Distribution and Mass Balance of Hexavalent and Trivalent Chromium in a Subsurface, Horizontal Flow (SF-h) Constructed Wetland Operating as Post-Treatment of Textile Wastewater for Water Reuse. J. Hazard. Mater. 2012, 199–200, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, S.; Cirelli, G.L.; Marzo, A.; Milani, M.; Toscano, A. Effect of Different Plant Species in Pilot Constructed Wetlands for Wastewater Reuse in Agriculture. J Agric. Eng. 2013, 44, e160. [Google Scholar] [CrossRef]
- Leto, C.; Tuttolomondo, T.; La Bella, S.; Leone, R.; Licata, M. Effects of Plant Species in a Horizontal Subsurface Flow Constructed Wetland—Phytoremediation of Treated Urban Wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecol. Eng. 2013, 61, 282–291. [Google Scholar] [CrossRef]
- Aiello, R.; Bagarello, V.; Barbagallo, S.; Iovino, M.; Marzo, A.; Toscano, A. Evaluation of Clogging in Full-Scale Subsurface Flow Constructed Wetlands. Ecol. Eng. 2016, 95, 505–513. [Google Scholar] [CrossRef]
- Borin, M.; Tocchetto, D. Five Year Water and Nitrogen Balance for a Constructed Surface Flow Wetland Treating Agricultural Drainage Waters. Sci. Total Environ. 2007, 380, 38–47. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Martinuzzi, N.; Masi, F. French Reed Bed as a Solution to Minimize the Operational and Maintenance Costs of Wastewater Treatment from a Small Settlement: An Italian Example. Water 2018, 10, 156. [Google Scholar] [CrossRef]
- Dal Ferro, N.; De Mattia, C.; Gandini, M.A.; Maucieri, C.; Stevanato, P.; Squartini, A.; Borin, M. Green Walls to Treat Kitchen Greywater in Urban Areas: Performance from a Pilot-Scale Experiment. Sci. Total Environ. 2021, 757, 144189. [Google Scholar] [CrossRef] [PubMed]
- Comino, E.; Riggio, V.; Rosso, M. Grey Water Treated by an Hybrid Constructed Wetland Pilot Plant under Several Stress Conditions. Ecol. Eng. 2013, 53, 120–125. [Google Scholar] [CrossRef]
- Barbera, A.C.; Cirelli, G.L.; Cavallaro, V.; Di Silvestro, I.; Pacifici, P.; Castiglione, V.; Toscano, A.; Milani, M. Growth and Biomass Production of Different Plant Species in Two Different Constructed Wetland Systems in Sicily. Desalination 2009, 246, 129–136. [Google Scholar] [CrossRef]
- Leto, C.; Tuttolomondo, T.; Bella, S.L.; Leone, R.; Licata, M. Growth of Arundo donax L. and Cyperus alternifolius L. in a Horizontal Subsurface Flow Constructed Wetland Using Pre-Treated Urban Wastewater—A Case Study in Sicily (Italy). Desalination Water Treat. 2013, 51, 7447–7459. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Carnevale Miino, M.; Gomez, F.H.; Torretta, V.; Rada, E.C.; Sorlini, S. Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. Int. J. Environ. Res. Public Health 2020, 17, 2317. [Google Scholar] [CrossRef]
- Barbagallo, S.; Cirelli, G.L.; Marzo, A.; Milani, M.; Toscano, A. Hydraulic Behaviour and Removal Efficiencies of Two H-SSF Constructed Wetlands for Wastewater Reuse with Different Operational Life. Water Sci. Technol. 2011, 64, 1032–1039. [Google Scholar] [CrossRef]
- Marzo, A.; Ventura, D.; Cirelli, G.L.; Aiello, R.; Vanella, D.; Rapisarda, R.; Barbagallo, S.; Consoli, S. Hydraulic Reliability of a Horizontal Wetland for Wastewater Treatment in Sicily. Sci. Total Environ. 2018, 636, 94–106. [Google Scholar] [CrossRef]
- Chiavola, A.; Bagolan, C.; Moroni, M.; Bongirolami, S. Hyperspectral Monitoring of a Constructed Wetland as a Tertiary Treatment in a Wastewater Treatment Plant. Int. J. Environ. Sci. Technol. 2020, 17, 3751–3760. [Google Scholar] [CrossRef]
- Spiniello, I.; De Carluccio, M.; Castiglione, S.; Amineva, E.; Kostryukova, N.; Cicatelli, A.; Rizzo, L.; Guarino, F. Landfill Leachate Treatment by a Combination of a Multiple Plant Hybrid Constructed Wetland System with a Solar PhotoFenton Process in a Raceway Pond Reactor. J. Environ. Manag. 2023, 331, 117211. [Google Scholar] [CrossRef]
- Lavrnić, S.; Braschi, I.; Anconelli, S.; Blasioli, S.; Solimando, D.; Mannini, P.; Toscano, A. Long-Term Monitoring of a Surface Flow Constructed Wetland Treating Agricultural Drainage Water in Northern Italy. Water 2018, 10, 644. [Google Scholar] [CrossRef]
- Ventura, D.; Ferrante, M.; Copat, C.; Grasso, A.; Milani, M.; Sacco, A.; Licciardello, F.; Cirelli, G.L. Metal Removal Processes in a Pilot Hybrid Constructed Wetland for the Treatment of Semi Synthetic Stormwater. Sci. Total Environ. 2021, 754, 142221. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, S.E.; Otto, S.; Gasparini, V.; Zanin, G.; Borin, M. Mitigation of Herbicide Runoff as an Ecosystem Service from a Constructed Surface Flow Wetland. Hydrobiologia 2016, 774, 193–202. [Google Scholar] [CrossRef]
- Comino, E.; Riggio, V.; Rosso, M. Mountain Cheese Factory Wastewater Treatment with the Use of a Hybrid Constructed Wetland. Ecol. Eng. 2011, 37, 1673–1680. [Google Scholar] [CrossRef]
- Gorra, R.; Freppaz, M.; Zanini, E.; Scalenghe, R. Mountain Dairy Wastewater Treatment with the Use of a ‘Irregularly Shaped’ Constructed Wetland (Aosta Valley, Italy). Ecol. Eng. 2014, 73, 176–183. [Google Scholar] [CrossRef]
- Masi, F.; Caffaz, S.; Ghrabi, A. Multi-Stage Constructed Wetland Systems for Municipal Wastewater Treatment. Water Sci. Technol. 2013, 67, 1590–1598. [Google Scholar] [CrossRef]
- Tolomio, M.; Dal Ferro, N.; Borin, M. Multi-Year N and P Removal of a 10-Year-Old Surface Flow Constructed Wetland Treating Agricultural Drainage Waters. Agronomy 2019, 9, 170. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Ibrahim, H.M.S.; Borin, M. Newly-Established Free Water-Surface Constructed Wetland to Treat Agricultural Waters in the Low-Lying Venetian Plain: Performance on Nitrogen and Phosphorus Removal. Sci. Total Environ. 2018, 639, 852–859. [Google Scholar] [CrossRef]
- Del Bubba, M.; Checchini, L.; Pifferi, C.; Zanieri, L.; Lepri, L. Olive Mill Wastewater Treatment by a Pilot-Scale Subsurface Horizontal Flow (SSF-h) Constructed Wetland. Ann. Di Chim. 2004, 94, 875–887. [Google Scholar] [CrossRef]
- Rizzo, A.; Bresciani, R.; Martinuzzi, N.; Masi, F. Online Monitoring of a Long-Term Full-Scale Constructed Wetland for the Treatment of Winery Wastewater in Italy. Appl. Sci. 2020, 10, 555. [Google Scholar] [CrossRef]
- Macci, C.; Peruzzi, E.; Doni, S.; Iannelli, R.; Masciandaro, G. Ornamental Plants for Micropollutant Removal in Wetland Systems. Environ. Sci. Pollut. Res. 2015, 22, 2406–2415. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, E.; Verlicchi, P.; Young, T.M. Paracetamol Removal in Subsurface Flow Constructed Wetlands. J. Hydrol. 2011, 404, 130–135. [Google Scholar] [CrossRef]
- Lavrnić, S.; Nan, X.; Blasioli, S.; Braschi, I.; Anconelli, S.; Toscano, A. Performance of a Full Scale Constructed Wetland as Ecological Practice for Agricultural Drainage Water Treatment in Northern Italy. Ecol. Eng. 2020, 154, 105927. [Google Scholar] [CrossRef]
- Borin, M.; Politeo, M.; De Stefani, G. Performance of a Hybrid Constructed Wetland Treating Piggery Wastewater. Ecol. Eng. 2013, 51, 229–236. [Google Scholar] [CrossRef]
- Licata, M.; Rossini, F.; Virga, G.; Ruggeri, R.; Farruggia, D.; Iacuzzi, N. Performance of a PilotScale Constructed Wetland and Medium-Term Effects of Treated Wastewater Irrigation of Arundo donax L. on Soil and Plant Parameters. Water 2021, 13, 1994. [Google Scholar] [CrossRef]
- Mietto, A.; Borin, M. Performance of Two Small Subsurface Flow Constructed Wetlands Treating Domestic Wastewaters in Italy. Environ. Technol. 2013, 34, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Ceschin, S.; Sgambato, V.; Ellwood, N.T.W.; Zuccarello, V. Phytoremediation Performance of Lemna Communities in a Constructed Wetland System for Wastewater Treatment. Environ. Exp. Bot. 2019, 162, 67–71. [Google Scholar] [CrossRef]
- La Bella, S.; Tuttolomondo, T.; Leto, C.; Bonsangue, G.; Leone, R.; Virga, G.; Licata, M. Pollutant Removal Efficiency of a Pilot-Scale Horizontal Subsurface Flow in Sicily (Italy) Planted with Cyperus alternifolius L. and Typha latifolia L. and Reuse of Treated Wastewater for Irrigation of Arundo donax L. for Pellet Production—Results of Two-Year Tests under Mediterranean Climatic Conditions. Desalination Water Treat. 2016, 57, 22743–22763. [Google Scholar] [CrossRef]
- Politeo, M.; Morin, M.; Milani, M.; Toscano, A.; Molari, G. Production and Energy Value of Phragmites australis Obtained from Two Constructed Wetlands. In Proceedings of the 19th European Bio-mass Conference and Exhibition, Berlin, Germany, 6–10 June 2011. [Google Scholar]
- Galletti, A.; Verlicchi, P.; Ranieri, E. Removal and Accumulation of Cu, Ni and Zn in Horizontal Subsurface Flow Constructed Wetlands: Contribution of Vegetation and Filling Medium. Sci. Total Environ. 2010, 408, 5097–5105. [Google Scholar] [CrossRef]
- Ranieri, E.; Gorgoglione, A.; Montanaro, C.; Iacovelli, A.; Gikas, P. Removal Capacity of BTEX and Metals of Constructed Wetlands under the Influence of Hydraulic Conductivity. Desalination Water Treat. 2015, 56, 1256–1263. [Google Scholar] [CrossRef]
- Toscano, A.; Hellio, C.; Marzo, A.; Milani, M.; Lebret, K.; Cirelli, G.L.; Langergraber, G. Removal Efficiency of a Constructed Wetland Combined with Ultrasound and UV Devices for Wastewater Reuse in Agriculture. Environ. Technol. 2013, 34, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Gikas, P.; Ranieri, E.; Tchobanoglous, G. Removal of Iron, Chromium and Lead from Waste Water by Horizontal Subsurface Flow Constructed Wetlands: Removal of Heavy Metals from Waste Water by Horizontal Subsurface Flow Constructed Wetlands. J. Chem. Technol. Biotechnol. 2013, 88, 1906–1912. [Google Scholar] [CrossRef]
- Francini, A.; Mariotti, L.; Di Gregorio, S.; Sebastiani, L.; Andreucci, A. Removal of Micro-Pollutants from Urban Wastewater by Constructed Wetlands with Phragmites Australis and Salix Matsudana. Environ. Sci. Pollut. Res. 2018, 25, 36474–36484. [Google Scholar] [CrossRef]
- Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D.; Al Aukidy, M.; Zambello, E. Removal of Selected Pharmaceuticals from Domestic Wastewater in an Activated Sludge System Followed by a Horizontal Subsurface Flow Bed—Analysis of Their Respective Contributions. Sci. Total Environ. 2013, 454–455, 411–425. [Google Scholar] [CrossRef] [PubMed]
- Licata, M.; Gennaro, M.C.; Tuttolomondo, T.; Leto, C.; La Bella, S. Research Focusing on Plant Performance in Constructed Wetlands and Agronomic Application of Treated Wastewater—A Set of Experimental Studies in Sicily (Italy). PLoS ONE 2019, 14, e0219445. [Google Scholar] [CrossRef]
- Licata, M.; La Bella, S.; Leto, C.; Virga, G.; Leone, R.; Bonsangue, G.; Tuttolomondo, T. Reuse of Urban-Treated Wastewater from a Pilot-Scale Horizontal Subsurface Flow System in Sicily (Italy) for Irrigation of Bermudagrass (Cynodon dactylon (L.) Pers.) Turf under Mediterranean Climatic Conditions. Desalination Water Treat. 2016, 57, 23343–23364. [Google Scholar] [CrossRef]
- Licata, M.; Farruggia, D.; Tuttolomondo, T.; Iacuzzi, N.; Leto, C.; Di Miceli, G. Seasonal Response of Vegetation on Pollutants Removal in Constructed Wetland System Treating Dairy Wastewater. Ecol. Eng. 2022, 182, 106727. [Google Scholar] [CrossRef]
- Bragato, C.; Schiavon, M.; Polese, R.; Ertani, A.; Pittarello, M.; Malagoli, M. Seasonal Variations of Cu, Zn, Ni and Cr Concentration in Phragmites Australis (Cav.) Trin Ex Steudel in a Constructed Wetland of North Italy. Desalination 2009, 246, 35–44. [Google Scholar] [CrossRef]
- Cirelli, G.L.; Consoli, S.; Di Grande, V.; Milani, M.; Toscano, A. Subsurface Constructed Wetlands for Wastewater Treatment and Reuse in Agriculture: Five Years of Experiences in Sicily, Italy. Water Sci. Technol. 2007, 56, 183–191. [Google Scholar] [CrossRef]
- Mietto, A.; Politeo, M.; Breschigliaro, S.; Borin, M. Temperature Influence on Nitrogen Removal in a Hybrid Constructed Wetland System in Northern Italy. Ecol. Eng. 2015, 75, 291–302. [Google Scholar] [CrossRef]
- Lavrnić, S.; Pereyra, M.Z.; Cristino, S.; Cupido, D.; Lucchese, G.; Pascale, M.R.; Toscano, A.; Mancini, M. The Potential Role of Hybrid Constructed Wetlands Treating University Wastewater—Experience from Northern Italy. Sustainability 2020, 12, 10604. [Google Scholar] [CrossRef]
- Licata, M.; Tuttolomondo, T.; Leto, C.; La Bella, S.; Virga, G. The Use of Constructed Wetlands for the Treatment and Reuse of Urban Wastewater for the Irrigation of Two Warm-Season Turfgrass Species under Mediterranean Climatic Conditions. Water Sci. Technol. 2017, 76, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Fibbi, D.; Doumett, S.; Colzi, I.; Coppini, E.; Pucci, S.; Gonnelli, C.; Lepri, L.; Del Bubba, M. Total and Hexavalent Chromium Removal in a Subsurface Horizontal Flow (h-SSF) Constructed Wetland Operating as Post-Treatment of Textile Wastewater for Water Reuse. Water Sci. Technol. 2011, 64, 826–831. [Google Scholar] [CrossRef]
- Licata, M.; Ruggeri, R.; Iacuzzi, N.; Virga, G.; Farruggia, D.; Rossini, F.; Tuttolomondo, T. Treatment of Combined Dairy and Domestic Wastewater with Constructed Wetland System in Sicily (Italy). Pollut. Remov. Effic. Eff. Vegetation. Water 2021, 13, 1086. [Google Scholar] [CrossRef]
- De Feo, G.; Lofrano, G.; Belgiorno, V. Treatment of High Strength Wastewater with Vertical Flow Constructed Wetland Filters. Water Sci. Technol. 2005, 51, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Milani, M.; Consoli, S.; Marzo, A.; Pino, A.; Randazzo, C.; Barbagallo, S.; Cirelli, G.L. Treatment of Winery Wastewater with a Multistage Constructed Wetland System for Irrigation Reuse. Water 2020, 12, 1260. [Google Scholar] [CrossRef]
- Maucieri, C.; Mietto, A.; Barbera, A.C.; Borin, M. Treatment Performance and Greenhouse Gas Emission of a Pilot Hybrid Constructed Wetland System Treating Digestate Liquid Fraction. Ecol. Eng. 2016, 94, 406–417. [Google Scholar] [CrossRef]
- Barco, A.; Borin, M. Treatment Performance and Macrophytes Growth in a Restored Hybrid Constructed Wetland for Municipal Wastewater Treatment. Ecol. Eng. 2017, 107, 160–171. [Google Scholar] [CrossRef]
- Cocozza, C.; Di Iaconi, C.; Murgolo, S.; Traversa, A.; De Mastro, F.; De Sanctis, M.; Altieri, V.G.; Cacace, C.; Brunetti, G.; Mascolo, G. Use of Constructed Wetlands to Prevent Overloading of Wastewater Treatment Plants. Chemosphere 2023, 311, 137126. [Google Scholar] [CrossRef]
- Maucieri, C.; Salvato, M.; Borin, M. Vegetation Contribution on Phosphorus Removal in Constructed Wetlands. Ecol. Eng. 2020, 152, 105853. [Google Scholar] [CrossRef]
- Albuzio, A.; Lubian, C.; Parolin, R.; Balsamo, R.; Camerin, I.; Valerio, P. Wastewater from a Mountain Village Treated with a Constructed Wetland. Desalination Water Treat. 2009, 1, 232–236. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Leto, C.; La Bella, S.; Leone, R.; Virga, G.; Licata, M. Water Balance and Pollutant Removal Efficiency When Considering Evapotranspiration in a Pilot-Scale Horizontal Subsurface Flow Constructed Wetland in Western Sicily (Italy). Ecol. Eng. 2016, 87, 295–304. [Google Scholar] [CrossRef]
- Kiran Kumar, V.; Man mohan, K.; Manangath, S.P.; Gajalakshmi, S. Innovative Pilot-Scale Constructed Wetland-Microbial Fuel Cell System for Enhanced Wastewater Treatment and Bioelectricity Production. Chem. Eng. J. 2023, 460, 141686. [Google Scholar] [CrossRef]
- Wang, S.; Gong, Z.; Wang, Y.; Cheng, F.; Lu, X. An Anoxic-Aerobic System Combined with Integrated Vertical-Flow Constructed Wetland to Highly Enhance Simultaneous Organics and Nutrients Removal in Rural China. J. Environ. Manag. 2023, 332, 117349. [Google Scholar] [CrossRef] [PubMed]
- Alayu, E.; Leta, S.; Alemu, T.; Mekonnen, A. Combined Effect of Macrophytes for Enhanced Pollutant Removals from Anaerobic Reactor Brewery Effluent. Wetlands 2023, 43, 13. [Google Scholar] [CrossRef]
- Saeed, T.; Yadav, A.K.; Miah, M.J. Treatment Performance of Stone Dust Packed Tidal Flow Electroactive and Normal Constructed Wetlands: Influence of Contact Time, Plants, and Electrodes. J. Water Process Eng. 2022, 50, 103257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Retta, B.; Coppola, E.; Ciniglia, C.; Grilli, E. Constructed Wetlands for the Wastewater Treatment: A Review of Italian Case Studies. Appl. Sci. 2023, 13, 6211. https://doi.org/10.3390/app13106211
Retta B, Coppola E, Ciniglia C, Grilli E. Constructed Wetlands for the Wastewater Treatment: A Review of Italian Case Studies. Applied Sciences. 2023; 13(10):6211. https://doi.org/10.3390/app13106211
Chicago/Turabian StyleRetta, Berhan, Elio Coppola, Claudia Ciniglia, and Eleonora Grilli. 2023. "Constructed Wetlands for the Wastewater Treatment: A Review of Italian Case Studies" Applied Sciences 13, no. 10: 6211. https://doi.org/10.3390/app13106211
APA StyleRetta, B., Coppola, E., Ciniglia, C., & Grilli, E. (2023). Constructed Wetlands for the Wastewater Treatment: A Review of Italian Case Studies. Applied Sciences, 13(10), 6211. https://doi.org/10.3390/app13106211