New Challenges in Nuclear Fusion Reactors: From Data Analysis to Materials and Manufacturing
Abstract
:1. Introduction
2. Overview of the Issue
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romanelli, F. Fusion energy. EPJ Web Conf. 2020, 246, 00013. [Google Scholar] [CrossRef]
- Romanelli, F.; Gelfusa, M. On the optimal mix of renewable energy sources, electrical energy storage and thermoelectric generation for the de-carbonization of the Italian electrical system. Eur. Phys. J. Plus 2020, 135, 72. [Google Scholar] [CrossRef]
- Kembleton, R. Nuclear fusion: What of the future? In Managing Global Warming; Academic Press: Cambridge, MA, USA, 2019; pp. 199–220. [Google Scholar] [CrossRef]
- Announcement of the Joint European Torus (JET) Deuterium-Tritium Results. Available online: https://www.youtube.com/watch?v=H99hvPlC4is (accessed on 9 February 2022).
- Federici, G.; Bachmann, C.; Barucca, L.; Baylard, C.; Biel, W.; Boccaccini, L.V.; Bustreo, C.; Ciattaglia, S.; Cismondi, F.; Corato, V.; et al. Overview of the DEMO staged design approach in Europe. Nucl. Fusion 2019, 59, 066013. [Google Scholar] [CrossRef]
- Igochine, V. Active Control of Magneto-Hydrodynamic Instabilities in Hot Plasmas; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ambrosino, R. DTT—Divertor Tokamak Test facility: A testbed for DEMO. Fusion Eng. Des. 2021, 167, 112330. [Google Scholar] [CrossRef]
- Wan, B.; Liang, Y.; Gong, X.; Xiang, N.; Xu, G.; Sun, Y.; Wang, L.; Qian, J.; Liu, H.; Zeng, L.; et al. Recent advances in EAST physics experiments in support of steady-state operation for ITER and CFETR. Nucl. Fusion 2019, 59, 112003. [Google Scholar] [CrossRef]
- Oh, Y.-K.; Yoon, S.; Jeon, Y.-M.; Ko, W.-H.; Hong, S.-H.; Lee, H.-H.; Kwon, J.-M.; Choi, M.; Park, B.-H.; Kwak, J.-G.; et al. Progress of the KSTAR Research Program Exploring the Advanced High Performance and Steady-State Plasma Operations. J. Korean Phys. Soc. 2018, 73, 712–735. [Google Scholar] [CrossRef]
- Shirai, H.; Barabaschi, P.; Kamada, Y.; The JT-60SA Team. Recent progress of the JT-60SA project. Nucl. Fusion 2017, 57, 102002. [Google Scholar] [CrossRef]
- De Vries, P.; Johnson, M.; Alper, B.; Buratti, P.; Hender, T.; Koslowski, H.; Riccardo, V. Survey of disruption causes at JET. Nucl. Fusion 2011, 51, 053018. [Google Scholar] [CrossRef]
- De Vries, P.; Pautasso, G.; Nardon, E.; Cahyna, P.; Gerasimov, S.; Havlicek, J.; Hender, T.; Huijsmans, G.; Lehnen, M.; Maraschek, M.; et al. Scaling of the MHD perturbation amplitude required to trigger a disruption and predictions for ITER. Nucl. Fusion 2015, 56, 026007. [Google Scholar] [CrossRef]
- Vega, J.; Murari, A.; Dormido-Canto, S.; Rattá, G.A.; Gelfusa, M.; Mailloux, J.; Abid, N.; Abraham, K.; Abreu, P.; Adabonyan, O.; et al. Disruption prediction with artificial intelligence techniques in tokamak plasmas. Nat. Phys. 2022, 18, 741–750. [Google Scholar] [CrossRef]
- Rattá, G.; Vega, J.; Murari, A.; Gadariya, D.; Contributors, J. PHAD: A phase-oriented disruption prediction strategy for avoidance, prevention, and mitigation in JET. Nucl. Fusion 2021, 61, 116055. [Google Scholar] [CrossRef]
- Aymerich, E.; Cannas, B.; Pisano, F.; Sias, G.; Sozzi, C.; Stuart, C.; Carvalho, P.; Fanni, A.; Contributors, T.J. Performance Comparison of Machine Learning Disruption Predictors at JET. Appl. Sci. 2023, 13, 2006. [Google Scholar] [CrossRef]
- Pucella, G.; Buratti, P.; Giovannozzi, E.; Alessi, E.; Auriemma, F.; Brunetti, D.; Ferreira, D.R.; Baruzzo, M.; Frigione, D.; Garzotti, L.; et al. Onset of tearing modes in plasma termination on JET: The role of temperature hollowing and edge cooling. Nucl. Fusion 2021, 61, 046020. [Google Scholar] [CrossRef]
- Ruiz, M.; Nieto, J.; Costa, V.; Craciunescu, T.; Peluso, E.; Vega, J.; Murari, A.; Contributors, J. Acceleration of an Algorithm Based on the Maximum Likelihood Bolometric Tomography for the Determination of Uncertainties in the Radiation Emission on JET Using Heterogeneous Platforms. Appl. Sci. 2022, 12, 6798. [Google Scholar] [CrossRef]
- Craciunescu, T.; Peluso, E.; Murari, A.; Gelfusa, M.; JET Contributors. Maximum likelihood bolometric tomography for the determination of the uncertainties in the radiation emission on JET TOKAMAK. Rev. Sci. Instrum. 2018, 89, 053504. [Google Scholar] [CrossRef]
- Craciunescu, T.; Peluso, E.; Murari, A.; Bernert, M.; Gelfusa, M.; Rossi, R.; Spolladore, L.; Wyss, I.; David, P.; Henderson, S.; et al. Submitted to Plasma Physics and Controlled Fusion.
- Hawryluk, R.J. An Empirical Approach to Tokamak Transport, Physics of Plasmas Close to Thermonuclear Conditions; Coppi, B., Leotta, G.G., Pfirsch, D., Pozzoli, R., Sindoni, E., Eds.; CEC: Brussels, Belgium, 1980; Volume 1, pp. 19–46. [Google Scholar]
- Goldston, R.J.; Reinke, M.L.; Schwartz, J.A. A new scaling for divertor detachment. Plasma Phys. Control. Fusion 2017, 59, 055015. [Google Scholar] [CrossRef]
- McCracken, G.M.; Lipschultz, B.; LaBombard, B.; Goetz, J.A.; Granetz, R.S.; Jablonski, D.; Lisgo, S.; Ohkawa, H.; Stangeby, P.C. Impurity screening in Ohmic and high confinement (H-mode) plasmas in the Alcator C-Mod tokamak. Phys. Plasmas 1997, 4, 1681–1689. [Google Scholar] [CrossRef]
- Xu, Y. A general comparison between tokamak and stellarator plasmas. Matter Radiat. Extremes 2016, 1, 192–200. [Google Scholar] [CrossRef]
- Beidler, C.D.; Smith, H.M.; Alonso, A.; Andreeva, T.; Baldzuhn, J.; Beurskens, M.N.A.; Borchardt, M.; Bozhenkov, S.A.; Brunner, K.J.; Damm, H.; et al. Demonstration of reduced neoclassical energy transport in Wendelstein 7-X. Nature 2021, 596, 221–226. [Google Scholar] [CrossRef]
- Murari, A.; Peluso, E.; Spolladore, L.; Vega, J.; Gelfusa, M. Considerations on Stellarator’s Optimization from the Perspective of the Energy Confinement Time Scaling Laws. Appl. Sci. 2022, 12, 2862. [Google Scholar] [CrossRef]
- Dinklage, A.; Ascasibar, E.; Beidler, C.D.; Brakel, R.; Geiger, J.; Harris, J.H.; Kus, A.; Murakami, S.; Okamura, S.; Preuss, R.; et al. Assessment of Global Stellarator Confinement: Status of the International Stellarator Confinement Database. Fusion Sci. Technol. 2007, 51, 1–7. [Google Scholar] [CrossRef]
- Zohm, H. Edge localized modes (ELMs). Plasma Phys. Control. Fusion 1996, 38, 105–128. [Google Scholar] [CrossRef]
- Lang, P.; Neuhauser, J.; Horton, L.; Eich, T.; Fattorini, L.; Fuchs, J.; Gehre, O.; Herrmann, A.; Ignácz, P.; Jakobi, M.; et al. E3LM frequency control by continuous small pellet injection in ASDEX Upgrade. Nucl. Fusion 2003, 43, 1110–1120. [Google Scholar] [CrossRef]
- Garzotti, L.; Lang, P.T.; Alonso, A.; Alper, B.; Belonohy, E.; Boboc, A.; Devaux, S.; Eich, T.; Frigione, D.; Gál, K.; et al. Investigating pellet ELM triggering physics using the new small size pellet launcher at JET. In Proceedings of the 37th EPS Conference on Plasma Physics, Dublin, Ireland, 21–25 June 2010; European Physical Society: Mulhouse, France, 2010. [Google Scholar]
- Baylor, L.R.; Jernigan, T.C.; Commaux, N.; Combs, S.K.; Foust, C.R.; Parks, P.B.; Evans, T.E.; Fenstermacher, M.E.; Moyer, R.A.; Osborne, T.H.; et al. ELMs Triggered from Deuterium Pellets Injected into DIII-D and Extrapolation to ITER. In Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, Greece, 9–13 June 2008; Volume 32D, pp. 4–098. [Google Scholar]
- Mansfield, D.; Roquemore, A.; Carroll, T.; Sun, Z.; Hu, J.; Zhang, L.; Liang, Y.; Gong, X.; Li, J.; Guo, H.; et al. First observations of ELM triggering by injected lithium granules in EAST. Nucl. Fusion 2013, 53, 113023. [Google Scholar] [CrossRef]
- Huysmans, G.T.A.; Pamela, S.; Van Der Plas, E.; Ramet, P. Non-linear MHD simulations of edge localized modes (ELMs). Plasma Phys. Control. Fusion 2009, 51, 124012. [Google Scholar] [CrossRef]
- Rossi, R.; Cesaroni, S.; Bombarda, F.; Gaudio, P.; Gelfusa, M.; Marinelli, M.; Rinati, G.V.; Peluso, E.; Contributors, J. An Unsupervised Spectrogram Cross-Correlation Method to Assess ELM Triggering Efficiency by Pellets. Appl. Sci. 2022, 12, 3681. [Google Scholar] [CrossRef]
- Bombarda, F.; Angelone, M.; Apruzzese, G.; Centioli, C.; Cesaroni, S.; Gabellieri, L.; Grosso, A.; Marinelli, M.; Milani, E.; Palomba, S.; et al. CVD diamond detectors for fast VUV and SX-ray diagnostics on FTU. Nucl. Fusion 2021, 61, 116004. [Google Scholar] [CrossRef]
- Futatani, S.; Pamela, S.; Garzotti, L.; Huijsmans, G.; Hoelzl, M.; Frigione, D.; Lennholm, M.; The JOREK Team; JET Contributors. Non-linear magnetohydrodynamic simulations of pellet triggered edge-localized modes in JET. Nucl. Fusion 2019, 60, 026003. [Google Scholar] [CrossRef]
- Tanabe, T.; Wada, M.; Ohgo, T.; Philipps, V.; Rubel, M.; Huber, A.; von Seggern, J.; Ohya, K.; Pospieszczyk, A.; Schweer, B. Application of tungsten for plasma limiters in TEXTOR. J. Nucl. Mater. 2000, 283–287, 1128–1133. [Google Scholar] [CrossRef]
- Krieger, K.; Maier, H.; Neu, R. Conclusions about the use of tungsten in the divertor of ASDEX Upgrade. J. Nucl. Mater. 1999, 266–269, 207–216. [Google Scholar] [CrossRef]
- Kubkowska, M.; Skladnik-Sadowska, E.; Kwiatkowski, R.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Paduch, M.; Sadowski, M.J.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; et al. Investigation of interactions of intense plasma streams with tungsten and carbon fibre composite targets in the PF-1000 facility. Phys. Scr. 2014, T161, 014038. [Google Scholar] [CrossRef]
- Ouaras, K.; Delacqua, L.C.; Quirós, C.; Lombardi, G.; Redolfi, M.; Vrel, D.; Hassouni, K.; Bonnin, X. Experimental studies of the interactions between a hydrogen plasma and a carbon or tungsten wall. J. Phys. Conf. Ser. 2015, 591, 012029. [Google Scholar] [CrossRef]
- Merola, M.; Bobin-Vastra, I.; Cardella, A.; Febvre, M.; Giancarli, L.; Plöchl, L.; Salavy, J.; Salito, A.; Schedler, B.; Vieider, G. Manufacturing of a full scale baffle prototype for ITER with a CFC and W plasma spray armour. Fusion Eng. Des. 2000, 49–50, 289–294. [Google Scholar] [CrossRef]
- Chong, F.; Chen, J.; Li, J.; Zheng, X. Failure behaviors of vacuum plasma sprayed tungsten coatings for plasma facing application. J. Nucl. Mater. 2009, 386–388, 780–783. [Google Scholar] [CrossRef]
- Sadowski, M.J.; Skladnik-Sadowska, E.; Malinowski, K.; Wołowski, J.; Marchenko, A.K.; Tsarenko, A.V. Investigation of laser interaction with tungsten target by means of time-resolved optical spectroscopy. Radiat. Eff. Defects Solids 2008, 163, 569–577. [Google Scholar] [CrossRef]
- Linke, J.; Loewenhoff, T.; Massaut, V.; Pintsuk, G.; Ritz, G.; Rödig, M.; Schmidt, A.; Thomser, C.; Uytdenhouwen, I.; Vasechko, V.; et al. Performance of different tungsten grades under transient thermal loads. Nucl. Fusion 2011, 51, 073017. [Google Scholar] [CrossRef]
- Kurehashi, H.; Ohtsuka, Y.; Ueda, Y.; Kurishita, H. Effects of repeated short heat pulses on tungsten. J. Nucl. Mater. 2011, 417, 487–490. [Google Scholar] [CrossRef]
- Zhou, Z.-J.; Song, S.-X.; Du, J.; Ge, C.-C. High heat flux testing of tungsten plasma facing materials. J. Nucl. Mater. 2007, 367–370, 1468–1471. [Google Scholar] [CrossRef]
- Farid, N.; Harilal, S.; El-Atwani, O.; Ding, H.; Hassanein, A. Experimental simulation of materials degradation of plasma-facing components using lasers. Nucl. Fusion 2013, 54, 12002. [Google Scholar] [CrossRef]
- Huber, A.; Arakcheev, A.; Sergienko, G.; Steudel, I.; Wirtz, M.; Burdakov, A.V.; Coenen, J.W.; Kreter, A.; Linke, J.; Mertens, P.; et al. Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten. Phys. Scr. 2014, T159, 014005. [Google Scholar] [CrossRef]
- Richetta, M.; Gaudio, P.; Montanari, R.; Pakhomova, E.; Antonelli, L. Laser Pulse Simulation of High Energy Transient Thermal Loads on Bulk and Plasma Sprayed W for NFR. Mater. Sci. Forum 2016, 879, 1576–1581. [Google Scholar] [CrossRef]
- Zhu, D.; Li, C.; Ding, R.; Wang, B.G.; Chen, J.; Gao, B.; Gu, Y.; Gong, X.; Team, E. Characterization of the in situ leading-edge-induced melting on the ITER-like tungsten divertor in EAST. Nucl. Fusion 2019, 60, 016036. [Google Scholar] [CrossRef]
- Zhu, D.; Li, C.; Gao, B.; Ding, R.; Wang, B.; Guo, Z.; Xuan, C.; Yu, B.; Lei, Y.; Chen, J.; et al. In situ leading-edge-induced damages of melting and cracking W/Cu monoblocks as divertor target during long-term operations in EAST. Nucl. Fusion 2022, 62, 056004. [Google Scholar] [CrossRef]
- Li, C.; Zhu, D.; Ding, R.; Wang, B.; Chen, J.; Gao, B.; Lei, Y. Characterization on the melting failure of CuCrZr cooling tube of W/Cu monoblocks during plasma operations in EAST. Nucl. Mater. Energy 2020, 25, 100847. [Google Scholar] [CrossRef]
- Lei, Y.; Zhu, D.; Li, C.; Gao, B.; Wang, B.; Ding, R.; Chen, J.; Yu, B.; Xuan, C. Result and discussion on the evolution of in-situ leading edge-induced melting on W divertor targets in EAST. Nucl. Mater. Energy 2021, 27, 100997. [Google Scholar] [CrossRef]
- Xi, Y.; He, G.; Zan, X.; Wang, K.; Zhu, D.; Luo, L.; Ding, R.; Wu, Y. Characterization of the Crack and Recrystallization of W/Cu Monoblocks of the Upper Divertor in EAST. Appl. Sci. 2023, 13, 745. [Google Scholar] [CrossRef]
- Riccardi, B.; Pizzuto, A.; Bertamini, L.; Diotalevi, M.; Viedier, G. Development of tungsten coatings for ITER divertor components. In Proceedings of the 17th IEEE/NPSS Symposium on Fusion Engineering, San Diego, CA, USA, 6–10 October 1997; p. 910. [Google Scholar]
- Riccardi, B.; Pizzuto, A.; Orsini, A.; Libera, S.; Visca, E.; Bertamini, L.; Casadei, F.; Severini, E.; Montanari, R.; Vesprini, R.; et al. Tungsten thick coatings for plasma facing components. Fusion Technol. 1998, 31, 223–226. [Google Scholar]
- Roedig, M.; Kuehnlein, W.; Linke, J.; Merola, M.; Rigal, E.; Schedler, B.; Visca, E. Investigation of tungsten alloys as plasma facing materials for the ITER divertor. Fusion Eng. Des. 2002, 61–62, 135–140. [Google Scholar] [CrossRef]
- Bolt, H.; Barabash, V.; Krauss, W.; Linke, J.; Neu, R.; Suzuki, S.; Yoshida, N.; Team, A.U. Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater. 2004, 329–333, 66–73. [Google Scholar] [CrossRef]
- Lipa, M.; Durocher, A.; Tivey, R.; Huber, T.; Schedler, B.; Weigert, J. The use of copper alloy CuCrZr as a structural material for actively cooled plasma facing and in vessel components. Fusion Eng. Des. 2005, 75–79, 469–473. [Google Scholar] [CrossRef]
- Uytdenhouwen, I.; Decréton, M.; Hirai, T.; Linke, J.; Pintsuk, G.; Van Oost, G. Influence of recrystallization on thermal shock resistance of various tungsten grades. J. Nucl. Mater. 2007, 363–365, 1099–1103. [Google Scholar] [CrossRef]
- Hu, D.; Zheng, X.; Niu, Y.; Ji, H.; Chong, F.; Chen, J. Effect of Oxidation Behavior on the Mechanical and Thermal Properties of Plasma Sprayed Tungsten Coatings. J. Therm. Spray Technol. 2008, 17, 377–384. [Google Scholar] [CrossRef]
- Huang, J.J.; Li, X.J.; Chen, J.; Liu, Y.; Qi, B.; Jiang, S.S.; Wang, X.S.; Luo, G.N. Vacuum annealing enhances the properties of a tungsten coating deposited on copper by atmospheric plasma spray. J. Nucl. Mater. 2013, 432, 16–19. [Google Scholar]
- Park, J.Y.; Yang, S.J.; Gil Jin, Y.; Park, C.R.; Kim, G.-H.; Han, H.N. Effect of annealing with pressure on tungsten film properties fabricated by atmospheric plasma spray. Met. Mater. Int. 2014, 20, 1037–1042. [Google Scholar] [CrossRef]
- Montanari, R.; Riccardi, B.; Volterri, R.; Bertamini, L. Characterisation of plasma sprayed W coatings on a CuCrZr alloy for nuclear fusion reactor applications. Mater. Lett. 2002, 52, 100–105. [Google Scholar] [CrossRef]
- Ciambella, L.; Maddaluno, G.; Montanari, R.; Pakhomova, E. Residual stresses in tungsten deposited by plasma spraying: Effect of substrate and processing methods. Metall. Ital. 2015, 107, 31–39. [Google Scholar]
- Vaßen, R.; Rauwald, K.-H.; Guillon, O.; Aktaa, J.; Weber, T.; Back, H.; Qu, D.; Gibmeier, J. Vacuum plasma spraying of functionally graded tungsten/EUROFER97 coatings for fusion applications. Fusion Eng. Des. 2018, 133, 148–156. [Google Scholar] [CrossRef]
- Emmerich, T.; Qu, D.; Vaßen, R.; Aktaa, J. Development of W-coating with functionally graded W/EUROFER-layers for protection of First-Wall materials. Fusion Eng. Des. 2018, 128, 58–67. [Google Scholar] [CrossRef]
- Cabibbo, M.; Fava, A.; Montanari, R.; Pakhomova, E.; Paoletti, C.; Richetta, M.; Varone, A. Residual stresses in the graded interlayer between W and CuCrZr alloy. J. Mater. Sci. 2022, 57, 285–298. [Google Scholar] [CrossRef]
- Heuer, S.; Matějíček, J.; Vilémová, M.; Koller, M.; Illkova, K.; Veverka, J.; Weber, T.; Pintsuk, G.; Coenen, J.; Linsmeier, C. Atmospheric plasma spraying of functionally graded steel/tungsten layers for the first wall of future fusion reactors. Surf. Coat. Technol. 2019, 366, 170–178. [Google Scholar] [CrossRef]
- Dose, G.; Roccella, S.; Romanelli, F. Engineering of a FGM Interlayer to Reduce the Thermal Stresses Inside the PFCs. Appl. Sci. 2022, 12, 10215. [Google Scholar] [CrossRef]
- Noce, S.; Flammini, D.; Gaudio, P.; Gelfusa, M.; Mazzone, G.; Moro, F.; Romanelli, F.; Villari, R.; You, J.-H. Neutronics Assessment of the Spatial Distributions of the Nuclear Loads on the DEMO Divertor ITER-like Targets: Comparison between the WCLL and HCPB Blanket. Appl. Sci. 2023, 13, 1715. [Google Scholar] [CrossRef]
- Rieth, M.; Schirra, M.; Falkenstein, A.; Graf, P.; Heger, S.; Kempe, H.; Lindau, R.; Zimmermann, H. EUROFER 97 Tensile, Charpy, Creep and Structural Tests; Report FZKA6911; Eurofusion Programme; Forschungzentrum Karlsruhe g.m.b.h.: Karlsruhe, Germany, 2003. [Google Scholar]
- Zilnyk, K.; Oliveira, V.; Sandim, H.; Möslang, A.; Raabe, D. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study. J. Nucl. Mater. 2015, 462, 360–367. [Google Scholar] [CrossRef]
- Montanari, R.; Filacchioni, G.; Riccardi, B.; Tata, M.; Costanza, G. Characterization of Eurofer-97 TIG-welded joints by FIMEC indentation tests. J. Nucl. Mater. 2004, 329–333, 1529–1533. [Google Scholar] [CrossRef]
- Lindau, R.; Möslang, A.; Rieth, M.; Klimiankou, M.; Materna-Morris, E.; Alamo, A.; Tavassoli, A.-A.F.; Cayron, C.; Lancha, A.-M.; Fernandez, P.; et al. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts. Fusion Eng. Des. 2005, 75–79, 989–996. [Google Scholar] [CrossRef]
- Coppola, R.; Klimenkov, M. Dose Dependence of Micro-Voids Distributions in Low-Temperature Neutron Irradiated Eurofer97 Steel. Metals 2019, 9, 552. [Google Scholar] [CrossRef]
- Roldán, M.; Fernández, P.; Rams, J.; Sánchez, F.J.; Gómez-Herrero, A. Nanoindentation and TEM to Study the Cavity Fate after Post-Irradiation Annealing of He Implanted EUROFER97 and EU-ODS EUROFER. Micromachines 2018, 9, 633. [Google Scholar] [CrossRef]
- Fu, J.; Brouwer, J.; Hendrikx, R.; Richardson, I.; Hermans, M. Microstructure characterisation and mechanical properties of ODS Eurofer steel subject to designed heat treatments. Mater. Sci. Eng. A 2019, 770, 138568. [Google Scholar] [CrossRef]
- Testani, C.; di Nunzio, P.E.; Salvatori, I. Manufacturing of ODS RAFM Steel: Mechanical and Microstructural Characterization. Mater. Sci. Forum 2016, 879, 1639–1644. [Google Scholar] [CrossRef]
- De Sanctis, M.; Fava, A.; Lovicu, G.; Montanari, R.; Richetta, M.; Testani, C.; Varone, A. Mechanical Characterization of a Nano-ODS Steel Prepared by Low-Energy Mechanical Alloying. Metals 2017, 7, 283. [Google Scholar] [CrossRef]
- Stornelli, G.; Di Schino, A.; Mancini, S.; Montanari, R.; Testani, C.; Varone, A. Grain Refinement and Improved Mechanical Properties of EUROFER97 by Thermo-Mechanical Treatments. Appl. Sci. 2021, 11, 10598. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peluso, E.; Pakhomova, E.; Gelfusa, M. New Challenges in Nuclear Fusion Reactors: From Data Analysis to Materials and Manufacturing. Appl. Sci. 2023, 13, 6240. https://doi.org/10.3390/app13106240
Peluso E, Pakhomova E, Gelfusa M. New Challenges in Nuclear Fusion Reactors: From Data Analysis to Materials and Manufacturing. Applied Sciences. 2023; 13(10):6240. https://doi.org/10.3390/app13106240
Chicago/Turabian StylePeluso, Emmanuele, Ekaterina Pakhomova, and Michela Gelfusa. 2023. "New Challenges in Nuclear Fusion Reactors: From Data Analysis to Materials and Manufacturing" Applied Sciences 13, no. 10: 6240. https://doi.org/10.3390/app13106240
APA StylePeluso, E., Pakhomova, E., & Gelfusa, M. (2023). New Challenges in Nuclear Fusion Reactors: From Data Analysis to Materials and Manufacturing. Applied Sciences, 13(10), 6240. https://doi.org/10.3390/app13106240