Center-to-Center Distance’s Effect between Vertical Square Tubes of a Horizontal Array on Natural Convection Heat Transfer
Abstract
:1. Introduction
2. Experimental Setup
2.1. Heat Transfer Analyses
2.2. Experimental Uncertainty
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Ab | Bakelite cross-section area |
As | the Tube outside surface area |
C | Constant |
D | Tube’s equivalent hydraulic diameter |
F | Shape factor |
g | Gravitational acceleration |
h | Heat transfer coefficient |
k | Thermal conductivity |
L | Tube length |
Nu | Nusselt number |
n | Tube number |
qb | Conduction heat flux through the Bakelite insulation capped ends |
qc | Convection heat flux |
qr | Radiation heat flux |
Local modified Rayleigh number | |
S | Center-to-center distance |
T | Temperature |
x | Local length |
Greek symbols | |
α | Thermal diffusivity |
β | Coefficient of thermal expansion |
δ | Bakelite thickness |
ε | Surface emissivity |
θ | Arithmetic mean temperature |
ϑ | Kinematic viscosity |
σ | Planks constant |
Subscripts | |
s | Single tube |
x | axial or circumference averaged |
References
- Vliet, G.C.; Liu, C.K. An experimental study of turbulent natural convection boundary layers. J. Heat Transf. 1969, 91, 517–531. [Google Scholar] [CrossRef]
- Ali, M. Natural convection heat transfer along vertical rectangular ducts. Heat Mass Transf. 2000, 46, 255–266. [Google Scholar] [CrossRef]
- Dutton, J.; Welty, J. An Experimental Study of Low Prandtl Number Natural Convection in an Array of Uniformly Heated Vertical Cylinders. J. Heat Transf. 1975, 97, 372–377. [Google Scholar] [CrossRef]
- Kuriyama, M.; Tokanai, H.; Harada, E.; Konno, H. Natural-Convection Heat Transfer around a Horizontal Array of Heated Cylinders in Air. Heat Transf. Jpn. Res. 1996, 25, 410–419. [Google Scholar] [CrossRef]
- Corcione, M. Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array. Int. J. Heat Mass Transf. 2005, 48, 3660–3673. [Google Scholar] [CrossRef]
- Yousefi, T.; Ashjaee, M. Experimental study of natural convection heat transfer from vertical array of isothermal horizontal elliptic cylinders. Exp. Therm. Fluid Sci. 2007, 32, 240–248. [Google Scholar] [CrossRef]
- Ashjaee, M.; Yousefi, T. Experimental Study of Free Convection Heat Transfer from Horizontal Isothermal Cylinders Arranged in Vertical and Inclined Arrays. Heat Transf. Eng. 2007, 28, 460–471. [Google Scholar] [CrossRef]
- Reymond, O.; Murray, D.B.; O’Donovan, T.S. Natural convection heat transfer from two horizontal cylinders. Exp. Therm. Fluid Sci. 2008, 32, 1702–1709. [Google Scholar] [CrossRef]
- D’Orazio, A.; Fontana, L. Experimental study of free convection from a pair of vertical arrays of horizontal cylinders at very low Rayleigh numbers. Int. J. Heat Mass Transf. 2010, 53, 3131–3142. [Google Scholar] [CrossRef]
- Reddy, A.S.; Akella, S.; Prasad, A. Experimental study of free convection heat transfer from array of vertical tubes at different inclinations. Int. J. Emerg. Technol. Adv. Eng. 2014, 253–257. [Google Scholar]
- Liu, J.; Liu, H.; Zhen, Q.; Lu, W. Laminar natural convection heat transfer from a pair of attached horizontal cylinders set in a vertical array. Appl. Therm. Eng. 2017, 115, 1004–1019. [Google Scholar] [CrossRef]
- Razzaghpanah, Z.; Sarunac, N.; Javanshir, A.; Khalesi, J. Natural convection heat transfer from a horizontal row of finite number of heated circular cylinders immersed in molten solar salt. J. Energy Storage 2019, 22, 176–187. [Google Scholar] [CrossRef]
- Ali, M.; Nuhait, A.; Almuzaiqer, R. The effect of square tube location in a vertical array of square tubes on natural convection heat transfer. Heat Transf. Eng. 2018, 39, 1036–1051. [Google Scholar] [CrossRef]
- William, D.; Callister, W.D.J. Materials Science and Engineering An Introduction, 6th ed.; John Wiley & Sons: New York, NY, USA, 2003; Chapter 19; p. 660. [Google Scholar]
- Siegel, R.; Howell, J.R. Thermal Radiation Heat Transfer, 3rd ed.; McGraw-Hill: New York, NY, USA, 1992. [Google Scholar]
- Marsters, G.F. Arrays of heated horizontal cylinders in natural convection. Int. J. Heat Mass Transf. 1972, 15, 921–933. [Google Scholar] [CrossRef]
- Kline, S.J.; McClintock, F.A. Describing uncertainties in single-sample experiments. ASME Mech. Eng. 1953, 75, 3–8. [Google Scholar]
- Moffat, R.J. Describing Uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–7. [Google Scholar] [CrossRef]
Quantity | Uncertainty (±%) |
---|---|
Electrical input power | 3.4 |
9.0 | |
4.7 | |
4.8 | |
4.8 | |
4.7 |
Heat Flux = 108.0 W/m2 | |||||
Temperature, °C | |||||
Left Surface (L) | Front Surface (F) | Right Surface (R) | Mean Value | Standard Deviation | |
Tube No. 1 | 48.51 | 50.84 | 47.73 | 49.03 | 1.62 |
Tube No. 2 | 49.55 | 48.90 | 48.39 | 48.95 | 0.58 |
Tube No. 3 | 47.40 | 47.21 | 49.15 | 47.92 | 1.07 |
Overall mean | 48.63 | ||||
Overall standard deviation | 1.14 | ||||
Overall relative standard deviation percent = standard deviation × 100/mean | 2.34 | ||||
Heat flux = 221.0 W/m2 | |||||
Temperature, °C | |||||
Left surface (L) | Front surface (F) | Right surface (R) | Mean value | Standard deviation | |
Tube No. 1 | 66.29 | 71.18 | 65.46 | 67.64 | 3.09 |
Tube No. 2 | 68.35 | 67.15 | 67.02 | 67.51 | 0.73 |
Tube No. 3 | 63.80 | 63.95 | 68.09 | 65.28 | 2.43 |
Overall mean | 66.81 | ||||
Overall standard deviation | 2.31 | ||||
Overall relative standard deviation percent = standard deviation × 100/mean | 3.46 | ||||
Heat flux = 341.0 W/m2 | |||||
Temperature, °C | |||||
Left surface (L) | Front surface (F) | Right surface (R) | Mean value | Standard deviation | |
Tube No. 1 | 79.73 | 84.10 | 76.06 | 79.96 | 4.03 |
Tube No. 2 | 80.06 | 76.61 | 76.75 | 77.81 | 1.95 |
Tube No. 3 | 73.26 | 75.03 | 80.07 | 76.12 | 3.56 |
Overall mean | 77.96 | ||||
Overall standard deviation | 3.30 | ||||
Overall relative standard deviation percent = standard deviation × 100/mean | 4.23 |
Fluke PRT (°C) | TC1 (°C) | TC2 (°C) | TC3 (°C) | TC4 (°C) | TC5 (°C) | TC6 (°C) | TC7 (°C) |
---|---|---|---|---|---|---|---|
97.65 | 97.49 | 97.48 | 97.49 | 97.40 | 97.35 | 97.36 | 97.27 |
Tube Number 1, (①, 2, 3) | |||
S/D | A | B | R2, % |
Single tube | 0.299 | 0.240 | 98.3 |
1.75 | 0.364 | 0.225 | 99.1 |
2.75 | 0.346 | 0.231 | 97.8 |
3.25 | 0.385 | 0.227 | 96.9 |
3.75 | 0.336 | 0.235 | 97.9 |
4.25 | 0.375 | 0.237 | 98.1 |
Tube number 2, (1, ②, 3) | |||
Single tube | 0.343 | 0.235 | 99.0 |
1.75 | 0.467 | 0.213 | 99.3 |
2.75 | 0.327 | 0.233 | 98.0 |
3.25 | 0.400 | 0.225 | 97.9 |
3.75 | 0.435 | 0.224 | 98.7 |
4.25 | 0.409 | 0.232 | 99.0 |
Tube number 3, (1, 2, ③) | |||
Single tube | 0.165 | 0.267 | 97.4 |
1.75 | 0.280 | 0.238 | 99.1 |
2.75 | 0.204 | 0.255 | 98.2 |
3.25 | 0.201 | 0.255 | 97.5 |
3.75 | 0.185 | 0.262 | 96.2 |
4.25 | 0.182 | 0.267 | 98.1 |
Tube Number 1, (①, 2, 3) | ||||
S/D | Ra = 5 × 1011 | Ra = 1 × 1011 | Ra = 1 × 1010 | Ra = 1 × 109 |
Single tube | 0 | 0 | 0 | 0 |
1.75 | −17.74 | −15.78 | 12.90 | −9.92 |
2.75 | −8.06 | −6.78 | −4.94 | −3.05 |
3.25 | −7.91 | −6.05 | −3.31 | −0.51 |
3.75 | −0.70 | 0.05 | 1.11 | 2.19 |
4.25 | 16.05 | 16.60 | 17.37 | 18.15 |
Tube number 2, (1, ②, 3) | ||||
S/D | Ra = 5 × 1011 | Ra = 1 × 1011 | Ra = 1 × 1010 | Ra = 1 × 109 |
Single tube | 0 | 0 | 0 | 0 |
1.75 | −23.92 | −21.23 | −17.21 | −13.00 |
2.75 | −10.64 | −10.29 | −9.81 | −9.31 |
3.25 | −10.43 | −9.00 | −6.93 | −4.79 |
3.75 | −6.12 | −4.40 | −1.91 | 0.65 |
4.25 | 11.00 | 11.47 | 12.16 | 12.86 |
Tube number 3, (1, 2, ③) | ||||
S/D | Ra = 5 × 1011 | Ra = 1 × 1011 | Ra = 1 × 1010 | Ra = 1 × 109 |
Single tube | 0 | 0 | 0 | 0 |
1.75 | −21.67 | −17.97 | −12.37 | −6.40 |
2.75 | −10.36 | −8.63 | −6.08 | −3.47 |
3.25 | −12.01 | −10.29 | −7.77 | −5.18 |
3.75 | −2.01 | −1.22 | −0.07 | 1.10 |
4.25 | 9.23 | 9.31 | 9.43 | 9.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsuhaibani, Z.; Ali, M.; Saleh, N.S. Center-to-Center Distance’s Effect between Vertical Square Tubes of a Horizontal Array on Natural Convection Heat Transfer. Appl. Sci. 2023, 13, 6345. https://doi.org/10.3390/app13106345
Alsuhaibani Z, Ali M, Saleh NS. Center-to-Center Distance’s Effect between Vertical Square Tubes of a Horizontal Array on Natural Convection Heat Transfer. Applied Sciences. 2023; 13(10):6345. https://doi.org/10.3390/app13106345
Chicago/Turabian StyleAlsuhaibani, Zeyad, Mohamed Ali, and Nader S. Saleh. 2023. "Center-to-Center Distance’s Effect between Vertical Square Tubes of a Horizontal Array on Natural Convection Heat Transfer" Applied Sciences 13, no. 10: 6345. https://doi.org/10.3390/app13106345
APA StyleAlsuhaibani, Z., Ali, M., & Saleh, N. S. (2023). Center-to-Center Distance’s Effect between Vertical Square Tubes of a Horizontal Array on Natural Convection Heat Transfer. Applied Sciences, 13(10), 6345. https://doi.org/10.3390/app13106345