Removing Rain Streaks from Visual Image Using a Combination of Bilateral Filter and Generative Adversarial Network
Abstract
:1. Introduction
- We used a bilateral filter to separate the high-frequency part of the original image.
- An image with no rain streaks, generated by the high-frequency layer of the image. We measured the authenticity of the generated image by a high-frequency global discriminator. The generator for the high-frequency layer of the image was designed to generate an image without rain streaks. We designed a high-frequency global discriminator to measure the authenticity of the generated image from multiple perspectives.
- We proposed the novel loss function based on the structural similarity index to further improve the effect of the rain streaks.
2. Methods for Removing Rain Streaks Based on Single-Frame Images
2.1. Single-Frame Image-Based Methods for Removing Rain Streaks Based on Image Decomposition
2.2. Single-Frame Image-Based Methods for Removing Rain Streaks Based on Deep Learning
3. Proposed Method
3.1. Analysis of Filter
3.2. Figures, Tables, and Schemes
3.3. Details of the H-G Discriminator
3.4. Loss Function
4. Experiment
4.1. Experiments on Synthetic Dataset
4.2. Experiments on Real-World Dataset
4.3. Selection of Low-Pass Filters
4.4. Ablation Experiments
4.5. Runtime
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garg, K.; Nayar, S.K. Detection and removal of rain from videos. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, Washington, DC, USA, 27 June–2 July 2004; p. I-I. [Google Scholar]
- Garg, K.; Nayar, S.K. Vision and rain. Int. J. Comput. Vis. 2007, 75, 3–27. [Google Scholar] [CrossRef]
- Kim, J.H.; Sim, J.Y.; Kim, C.S. Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE Trans. Image Process. 2015, 24, 2658–2670. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Tan, R.T.; Kawakami, R.; Mukaigawa, Y.; Ikeuchi, K. Adherent raindrop modeling, detection and removal in video. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1721–1733. [Google Scholar] [CrossRef] [PubMed]
- Bossu, J.; Hautière, N.; Tarel, J.P. Rain or snow detection in image sequences through use of a histogram of orientation of streaks. Int. J. Comput. Vis. 2011, 93, 348–367. [Google Scholar] [CrossRef]
- Kang, L.W.; Lin, C.W.; Fu, Y.H. Automatic single-image-based rain streaks removal via image decomposition. IEEE Trans. Image Process. 2011, 21, 1742–1755. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, Y.; Ji, H. Removing Rain from a Single Image via Discriminative Sparse Coding. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015; pp. 3397–3405. [Google Scholar]
- Deng, L.J.; Huang, T.Z.; Zhao, X.L.; Jiang, T.X. A directional global sparse model for single image rain removal. Appl. Math. Model. 2018, 59, 662–679. [Google Scholar] [CrossRef]
- Li, Y.; Tan, R.T.; Guo, X.; Lu, J.; Brown, M.S. Rain Streak Removal Using Layer Priors. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2736–2744. [Google Scholar]
- Wu, C.; Ju, B.; Wu, Y.; Lin, X.; Xiong, N.; Xu, G.; Li, H.; Liang, X. UAV autonomous target search based on deep reinforcement learning in complex disaster scene. IEEE Access 2019, 7, 117227–117245. [Google Scholar] [CrossRef]
- Palevičius, P.; Pal, M.; Landauskas, M.; Orinaitė, U.; Timofejeva, I.; Ragulskis, M. Automatic Detection of Cracks on Concrete Surfaces in the Presence of Shadows. Sensors 2022, 22, 3662. [Google Scholar] [CrossRef]
- Pal, M.; Palevičius, P.; Landauskas, M.; Orinaitė, U.; Timofejeva, I.; Ragulskis, M. An Overview of Challenges Associated with Automatic Detection of Concrete Cracks in the Presence of Shadows. Appl. Sci. 2021, 11, 11396. [Google Scholar] [CrossRef]
- He, R.; Xiong, N.; Yang, L.T.; Park, J.H. Using multi-modal semantic association rules to fuse keywords and visual features automatically for web image retrieval. Inf. Fusion 2011, 12, 223–230. [Google Scholar] [CrossRef]
- Eigen, D.; Krishnan, D.; Fergus, R. Restoring an image taken through a window covered with dirt or rain. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 633–640. [Google Scholar]
- Fu, X.; Huang, J.; Zeng, D.; Huang, Y.; Ding, X.; Paisley, J. Removing Rain from Single Images via a Deep Detail Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1715–1723. [Google Scholar]
- Fu, X.; Huang, J.; Ding, X.; Liao, Y.; Paisley, J. Clearing the skies: A deep network architecture for single-image rain removal. IEEE Trans. Image Process. 2017, 26, 2944–2956. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Tan, R.T.; Feng, J.; Liu, J.; Guo, Z.; Yan, S. Deep joint rain detection and removal from a single image. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1357–1366. [Google Scholar]
- Zhang, H.; Patel, V.M. Density-aware single image de-raining using a multi-stream dense network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 695–704. [Google Scholar]
- Xia, H.; Zhuge, R.; Li, H.; Song, S.; Jiang, F.; Xu, M. Single Image Rain Removal via a Simplified Residual Dense Network. IEEE Access 2018, 6, 66522–66535. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Lin, Z.; Liu, H.; Zha, H. Recurrent squeeze-and-excitation context aggregation net for single image deraining. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 254–269. [Google Scholar]
- Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Ding, H.; Sun, Y.; Wang, Z.; Huang, N.; Shen, Z.; Cui, X. RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification. Inf. Process. Manag. 2023, 60, 103235. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Gao, C.C.; Huang, Y.J.; Sheng, W.G.; Wang, Z. Evolutionary ensemble generative adversarial learning for identifying terrorists among high-speed rail passengers. Expert Syst. Appl. 2022, 210, 118430. [Google Scholar] [CrossRef]
- Zhang, H.; Sindagi, V.; Patel, V.M. Image De-Raining Using a Conditional Generative Adversarial Network. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 3943–3956. [Google Scholar] [CrossRef]
- Pu, J.; Chen, X.; Zhang, L.; Zhou, Q.; Zhao, Y. Removing rain based on a cycle generative adversarial network. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 2158–2297. [Google Scholar]
- Qian, R.; Tan, R.T.; Yang, W.; Su, J.; Liu, J. Attentive Generative Adversarial Network for Raindrop Removal from a Single Image. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2482–2491. [Google Scholar]
- Xiang, P.; Wang, L.; Wu, F.; Cheng, J.; Zhou, M. Single-image de-raining with feature-supervised generative adversarial network. IEEE Signal Process. Lett. 2019, 26, 650–654. [Google Scholar] [CrossRef]
- Sharma, P.K.; Jain, P.; Sur, A. Dual-Domain Single image de-raining using conditional generative adversarial network. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2796–2800. [Google Scholar]
- Jin, X.; Chen, Z.; Li, W. AI-GAN: Asynchronous interactive generative adversarial network for single image rain removal. Pattern Recognit. 2020, 100, 107143. [Google Scholar] [CrossRef]
- Chen, C.; Hao, L. Robust Representation Learning with Feedback for Single Image Deraining. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–25 June 2021; pp. 7738–7747. [Google Scholar]
- Zou, W.; Wang, Y.; Fu, X.; Cao, Y. Dreaming to Prune Image Deraining Networks. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 19–24 June 2022; pp. 6013–6022. [Google Scholar]
- Chen, X.; Li, H.; Li, M.; Pan, J. Learning a Sparse Transformer Network for Effective Image Deraining. arXiv 2023, arXiv:2303.11950. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Bauer, E.; Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 1999, 36, 105–139. [Google Scholar] [CrossRef]
- Sara, U.; Akter, M.; Uddin, M. Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 586–595. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 60–65. [Google Scholar]
- Elad, M. On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 2002, 11, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
No. | Layer | K 1 | ST 2 | In-Out Channel | BN | A 3 | F 4 | Output |
---|---|---|---|---|---|---|---|---|
1 | Conv | 5 × 5 | 1 | 3-64 | Yes | LReLU | I 5 | 320 × 480 × 64 |
2 | Conv 6 | 3 × 3 | 1 | 64-64 | Yes | LReLU | I | 320 × 480 × 64 |
3 | Conv | 3 × 3 | 2 | 64-64 | Yes | LReLU | I/4 | 160 × 240 × 64 |
4 | Conv | 3 × 3 | 1 | 64-128 | Yes | LReLU | I/4 | 160 × 240 × 128 |
5 | Conv | 3 × 3 | 2 | 128-128 | Yes | LReLU | I/16 | 80 × 120 × 128 |
6 | Conv | 3 × 3 | 1 | 128-256 | Yes | LReLU | I/16 | 80 × 120 × 256 |
7 | Conv | 3 × 3 | 2 | 256-256 | Yes | LReLU | I/64 | 40 × 60 × 256 |
8 | Conv | 3 × 3 | 1 | 256-512 | Yes | LReLU | I/64 | 40 × 60 × 512 |
9 | DeConv 7 | 3 × 3 | 2 | 512-256 | No | LReLU | I/16 | 80 × 120 × 256 |
10 | Conv | 3 × 3 | 1 | 512-256 | Yes | LReLU | I/16 | 80 × 120 × 256 |
11 | DeConv | 3 × 3 | 2 | 256-128 | No | LReLU | I/4 | 160 × 240 × 128 |
12 | Conv | 3 × 3 | 1 | 256-128 | Yes | LReLU | I/4 | 160 × 240 × 128 |
13 | DeConv | 3 × 3 | 2 | 128-64 | No | LReLU | I | 320 × 480 × 64 |
14 | Conv | 3 × 3 | 1 | 128-64 | Yes | LReLU | I | 320 × 480 × 64 |
15 | Conv | 3 × 3 | 1 | 64-3 | No | Tanh | I | 320 × 480 × 32 |
No. | Layer | K 1 | ST 2 | In-Out Channel | BN | A 3 | F 4 | Output |
---|---|---|---|---|---|---|---|---|
1-1 | Conv | 5 × 5 | 1 | 3-16 | Yes | ReLU | I 5 | 320 × 480 × 16 |
1-2 | Conv 6 | 3 × 3 | 1 | 3-16 | Yes | ReLU | I | 320 × 480 × 16 |
2-1 | Conv | 3 × 3 | 1 | 16-16 | Yes | ReLU | I | 320 × 480 × 16 |
2-2 | Max-Pool 7 | 2 × 2 | 2 | 16-16 | No | / | I/4 | 160 × 240 × 16 |
3-1 | Conv | 3 × 3 | 1 | 16-32 | Yes | ReLU | I/4 | 160 × 240 × 32 |
3-2 | Max-Pool | 2 × 2 | 2 | 32-32 | No | / | I/16 | 80 × 120 × 32 |
4-1 | Conv | 3 × 3 | 1 | 32-64 | Yes | ReLU | I/16 | 80 × 120 × 64 |
4-2 | Max-Pool | 2 × 2 | 2 | 64-64 | No | / | I/64 | 40 × 60 × 64 |
5-1 | Conv | 3 × 3 | 1 | 64-128 | Yes | ReLU | I/64 | 40 × 60 × 28 |
5-2 | Max-Pool | 2 × 2 | 2 | 128-128 | No | / | I/256 | 20 × 30 × 64 |
6 | FC | / | / | 128-1 | No | Sigmiod | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xu, M.; Chen, C.; Xue, F. Removing Rain Streaks from Visual Image Using a Combination of Bilateral Filter and Generative Adversarial Network. Appl. Sci. 2023, 13, 6387. https://doi.org/10.3390/app13116387
Yang Y, Xu M, Chen C, Xue F. Removing Rain Streaks from Visual Image Using a Combination of Bilateral Filter and Generative Adversarial Network. Applied Sciences. 2023; 13(11):6387. https://doi.org/10.3390/app13116387
Chicago/Turabian StyleYang, Yue, Minglong Xu, Chuang Chen, and Fan Xue. 2023. "Removing Rain Streaks from Visual Image Using a Combination of Bilateral Filter and Generative Adversarial Network" Applied Sciences 13, no. 11: 6387. https://doi.org/10.3390/app13116387
APA StyleYang, Y., Xu, M., Chen, C., & Xue, F. (2023). Removing Rain Streaks from Visual Image Using a Combination of Bilateral Filter and Generative Adversarial Network. Applied Sciences, 13(11), 6387. https://doi.org/10.3390/app13116387